Please login or register.

Login with username, password and session length

Author Topic: Các nhà bác học Vật lý  (Read 60720 times)

23 Tháng Bảy, 2006, 08:21:46 AM
  • MOD
  • ***
  • Posts: 293
  • Điểm bài viết: 7
  • VIP CIENGUYEN®
Danh sách các nhà bác học được giải Noben Vật lý


Thập niên 1900

1901 Wilhelm Conrad Röntgen Khám phá ra tia X.
1902 Hendrik Lorentz và Pieter Zeeman Đóng góp cho từ học và bức xạ.
1903 Henri Becquerel Nghiên cứu về hiện tượng phóng xạ.
Pierre Curie và Maria Skłodowska-Curie Nghiên cứu về hiện tượng phóng xạ cùng với Henri Becquerel.
1904 John Strutt, Nam tước Rayleigh thứ 3 Tìm ra khí Agon và các hiện tượng liên quan.
1905 Philipp Lenard Nghiên cứu về ống chùm ca-tốt.
1906 Sir J. J. Thomson Nghiên cứu lý thuyết và thực nghiệm về quá trình dẫn điện của chất khí.
1907 Albert Abraham Michelson Chế tạo dụng cụ quang học chính xác và nghiên cứu về quang phổ học.
1908 Gabriel Lippmann Tạo hình ảnh màu bằng phương pháp giao thoa.
1909 Guglielmo Marconi và Karl Ferdinand Braun Phát triển liên lạc viễn thông.

Thập niên 1910

1910 Johannes Diderik van der Waals Phương trình trạng thái của chất khí và chất lỏng.
1911 Wilhelm Wien Tìm ra định luật bức xạ nhiệt.
1912 Gustaf Dalén Phát minh van mặt trời dùng thắp sáng các cột mốc và phao trên biển.
1913 Heike Kamerlingh Onnes Nghiên cứu tính chất của vật chất tại nhiệt độ thấp và tạo ra hêli lỏng.
1914 Max von Laue Phát hiện ra hiện tượng nhiễu xạ tia X bởi các tinh thể.
1915 Sir William Henry Bragg và
Sir William Lawrence Bragg Nghiên cứu tính chất tinh thể bằng tia X.
1916 (Tiền của giải thưởng được dùng cho Quỹ đặc biệt.)
1917 Charles Glover Barkla Tìm ra bức xạ tia X đặc trưng của các nguyên tố.
1918 Max Planck Thúc đẩy vật lý bằng việc tìm ra lượng tử năng lượng.
1919 Johannes Stark Tìm ra hiệu ứng Doppler trong ánh sáng và sự tách các vạch phổ dưới tác dụng của từ trường.

Thập niên 1920

1920 Charles Edouard Guillaume Nghiên cứu về đo lường chính xác và tìm ra hợp kim thép và niken.
1921 Albert Einstein Nghiên cứu về hiệu ứng quang điện và đóng góp khác cho vật lý lý thuyết.
1922 Niels Bohr Nghiên cứu về cấu trúc nguyên tử và phát xạ nguyên tử.
1923 Robert Millikan Nghiên cứu về điện tích điện tử và hiệu ứng quang điện.
1924 Manne Siegbahn Nghiên cứu trong lĩnh vực phổ tia X.
1925 James Franck và Gustav Ludwig Hertz Nghiên cứu ảnh hưởng của điện tử lên nguyên tử.
1926 Jean Baptiste Perrin Nghiên cứu về tính gián đoạn của vật chất và đặc biệt là tìm ra cân bằng ngưng tụ.
1927 Arthur Compton Tìm ra hiệu ứng Compton.
Charles Thomson Rees Wilson Quan sát được hạt tán xạ có năng lượng cao
1928 Owen Willans Richardson Phát hiện việc phát xạ điện tử là do hiệu ứng nhiệt
1929 Louis de Broglie, Công tước de Broglie thứ 7 Tìm ra bản chất sóng của điện tử

Thập niên 1940

1930 Sir Chandrasekhara Venkata Raman Tìm ra hiệu ứng Raman.
1931 (Tiền thưởng được đưa vào Quỹ đặc biệt.)
1932 Werner Heisenberg Xây dựng cơ học lượng tử và nhờ đó tìm ra các dạng thù hình của hiđrô.
1933 Erwin Schrödinger và Paul Dirac Tìm ra một cách biểu diễn mới cho lý thuyết nguyên tử.
1934 (1/3 số tiền thưởng dành cho Quỹ chính, 2/3 dành cho Quỹ đặc biệt.)
1935 Sir James Chadwick Tìm ra neutron.
1936 Victor Francis Hess Tìm ra bức xạ vũ trụ.
Carl David Anderson Tìm ra phản điện tử (positron).
1937 Clinton Davisson và George Paget Thomson Tìm ra tán xạ điện tử trên tinh thể bằng thực nghiệm.
1938 Enrico Fermi Chứng minh sự tồn tại của các nguyên tố phóng xạ mới nhờ chiếu xạ neutron và nghiên cứu về phản ứng hạt nhân.
1939 Ernest Lawrence Phát minh và phát triển máy gia tốc cyclotron và nguyên tố phóng xạ nhân tạo

Thập niên 1940

1940 (1/3 giải dành cho Quỹ chính, 2/3 giải dành cho Quỹ đặc biệt.)
1941
1942
1943 Otto Stern Phát triển phương pháp chùm phân tử và tìm ra mô men từ của proton.
1944 Isidor Isaac Rabi Phương pháp cộng hưởng để thu được từ tính của hạt nhân nguyên tử.
1945 Wolfgang Pauli Tìm ra nguyên lý loại trừ Pauli.
1946 Percy Williams Bridgman Phát minh ra dụng cụ đo áp suất cao và các phát hiện trong lĩnh vực vật lý áp suất cao.
1947 Sir Edward Victor Appleton Nghiên cứu vật lý của tần trên khí quyển và đặc biệt là tìm ra lớp Appleton.
1948 Patrick Blackett Phát triển phương pháp buồng mây Wilson và các khám phá trong lĩnh vực
vật lý hạt nhân và bức xạ vũ trụ.
1949 Hideki Yukawa (湯川 秀樹) Tiên đoán về sự tồn tại của hạt meson trên cơ sở lý thuyết về các lực hạt nhân.

Thập niên 1950

1950 Cecil Frank Powell Phát triển phương pháp chụp ảnh để nghiên cứu hạt nhân và các nghiên cứu về hạt meson thu được từ phương pháp này.
1951 Sir John Cockcroft và Ernest Walton Tiên phong trong nghiên cứu biến tố hạt nhân bằng các hạt nguyên tử được gia tốc nhân tạo.
1952 Felix Bloch và Edward Mills Purcell Phát triển các phương pháp mới đo chính xác từ hạt nhân và các khám phá có liên quan.
1953 Frits Zernike Phát triển phương pháp tương phản pha, đặc biệt là phát minh ra kính hiển vi tương phản pha.
1954 Max Born Nghiên cứu cơ bản về cơ học lượng tử đặc biệt là ý nghĩa thống kê của hàm sóng.
Walther Bothe Tìm ra phương pháp trùng hợp và các khám phá có liên quan.
1955 Willis Lamb Phát hiên cấu trúc tinh tế của quang phổ hydrogen.
Polykarp Kusch Xác định chính xác mô men từ của điện tử.
1956 William Shockley, John Bardeen và Walter Brattain Nghiên cứu về chất bán dẫn và tìm ra hiệu ứng transistor.
1957 Dương Chấn Ninh (楊振寧) và Lý Chính Đạo (李政道) Nghiên cứu về tính chẵn lẻ dẫn đến các khám phá quan trọng liên quan đến các hạt cơ bản.
1958 Pavel Alekseyevich Cherenkov (Павел Алексеевич Черенков), Ilya Mikhailovich Frank (Илья Михайлович Франк) và Igor Yevgenyevich Tamm (Игорь Евгеньевич Тамм) Tìm ra và giải thích hiệu ứng Cherenkov.
1959 Emilio Gino Segrè và Owen Chamberlain Tìm ra phản proton.

Thập niên 1960

1960 Donald Arthur Glaser Phát minh ra buồng bọt
1961 Robert Hofstadter Tiên phong trong nghiên cứu về tán xạ điện tử trong hạt nhân và các khám phá liên quan đến cấu trúc của các nucleon.
Rudolf Mössbauer Nghiên cứu về hấp thụ cộng hưởng tia gamma và hiệu ứng Mossbauer.
1962 Lev Davidovich Landau (Лев Давидович Ландау) Tiên phong trong nghiên cứu lý thuyết chất rắn đặc biệt là hêli lỏng.
1963 Eugene Wigner Đóng góp vào lý thuyết hạt nhân nguyên tử và các hạt cơ bản đặc biệt là tìm ra và ứng dụng các nguyên lý đối xứng cơ bản.
Maria Goeppert-Mayer và J. Hans D. Jensen Tìm ra cấu trúc lớp hạt nhân.
1964 Charles Townes, Nicolay Gennadiyevich Basov (Николай Геннадиевич Басов) và Aleksandr Mikhailovich Prokhorov (Александр Михайлович Прохоров) Nghiên cứu cơ bản trong lĩnh vực điện lượng tử dẫn đến việc xây dựng các máy tạo dao động và máy khuyếch đại dựa trên nguyên lý maser-laser.
1965 Sin-Itiro Tomonaga (朝永振一郎), Julian Schwinger và Richard Feynman Nghiên cứu cơ bản về điện động học lượng tử và vật lý hạt cơ bản.
1966 Alfred Kastler Tìm ra và sử dụng các phương pháp quang học để nghiên cứu cộng hưởng Hertz trong các nguyên tử.
1967 Hans Bethe Đóng góp cho lý thuyết phản ứng hạt nhân đặc biệt là các khám phá liên quan đến quá trình tạo năng lượng ở các vì sao.
1968 Luis Alvarez Đóng góp vào vật lý hạt cơ bản, tìm ra các trạng thái cộng hưởng góp phần phát triển kỹ thuật sử dụng buồng bọt hydrogen và phân tích dữ liệu.
1969 Murray Gell-Mann Đóng góp và khám phá liên quan đến phân loại các hạt cơ bản và tương tác giữa chúng.

Thập niên 1970

1970 Hannes Alfvén "for fundamental work and discoveries in magneto-hydrodynamics with fruitful applications in different parts of plasma physics"
Louis Eugène Félix Néel "for fundamental work and discoveries concerning antiferromagnetism and ferrimagnetism which have led to important applications in solid state physics"
1971 Gábor Dénes (Dennis Gabor) "for his invention and development of the holographic method"
1972 John Bardeen, Leon Neil Cooper và John Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory"
1973 Leo Esaki (江崎 玲於奈) và Ivar Giaever "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"
Brian David Josephson "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effect"
1974 Sir Martin Ryle và Antony Hewish "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"
1975 Aage Niels Bohr, Ben Roy Mottelson và James Rainwater "for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection"
1976 Burton Richter và Đinh Triệu Trung (丁肇中, Samuel Chao Chung Ting) "for their pioneering work in the discovery of a heavy elementary particle of a new kind". In other words: for discovery of the J/Ψ particle as it confirmed the idea that baryonic matter (such as the nuclei of atoms) is made out of quarks.
1977 Philip Warren Anderson, Sir Nevill Francis Mott và John Hasbrouck van Vleck "for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems"
1978 Pyotr Leonidovich Kapitsa (Пётр Леонидович Капица) "for his basic inventions and discoveries in the area of low-temperature physics"
Arno Allan Penzias và Robert Woodrow Wilson "for their discovery of cosmic microwave background radiation"
1979 Sheldon Lee Glashow, Abdus Salam và Steven Weinberg "for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current"

Thập niên 1980

1980 James Cronin và Val Logsdon Fitch Tìm ra sự vi phạm các nguyên lý đối xứng cơ bản trong của hạt K-meson.
1981 Nicolaas Bloembergen và Arthur Leonard Schawlow Phát triển phổ laser.
Kai Siegbahn Phát triển phổ điện tử độ phân giải cao.
1982 Kenneth G. Wilson Xây dựng lý thuyết về các hiện tượng tới hạn liên quan đến chuyển pha.
1983 Subrahmanyan Chandrasekhar Nghiên cứu lý thuyết về tiến hóa của các vì sao.
William Alfred Fowler Nghiên cứu lý thuyết và thực nghiệm các phản ứng hạt nhân và sự hình thành các nguyên tố hóa học trong vũ trụ.
1984 Carlo Rubbia và Simon van der Meer Đóng góp quan trọng trong việc tìm ra các hạt W, Z truyền tương tác yếu.
1985 Klaus von Klitzing Phát hiện ra hiệu ứng Hall lượng tử.
1986 Ernst Ruska Nghiên cứu cơ bản về quang điện tử, thiết kế kính hiển vi điện tử đầu tiên.
Gerd Binnig và Heinrich Rohrer Thiết kế hiển vi đường hầm quét.
1987 Johannes Georg Bednorz và Karl Alexander Müller Tìm ra hiện tượng siêu dẫn trong vật liệu gốm.
1988 Leon M. Lederman, Melvin Schwartz và Jack Steinberger Phương pháp chùm neutrino và cấu trúc kép của lepton thông qua việc tìm ra muon neutrino.
1989 Norman F. Ramsey Phát minh ra phương pháp trường dao động sử dụng trong maser
hydrogen và đồng hồ nguyên tử.
Hans Georg Dehmelt và Wolfgang Paul Phát triển kỹ thuật bẫy.

Thập niên 1990

1990 Jerome Isaac Friedman, Henry Way Kendall và Richard Ẹ Taylor Nghiên cứu tán xạ không đàn hồi của điện tử lên proton và neutron giúp phát triển mô hình quark.
1991 Pierre-Gilles de Gennes Phương pháp nghiên cứu các hiện tượng trật tự trong các hệ đơn giản được khái quát hóa cho các hệ phức tạp, đặc biệt trong tinh thể lỏng và cao phân tử.
1992 Georges Charpak Phát triển máy thu hạt và buồng đa dây.
1993 Russell Alan Hulse và Joseph Hooton Taylor, Jr. Phát hiện ra một loại pulsar mới giúp nghiên cứu về trường hấp dẫn.
1994 Cả hai Phát triển kỹ thuật nhiễu xạ neutron trong nghiên cứu vật lý chất rắn.
Bertram Brockhouse Phát triển phổ neutron.
Clifford Shull Phát triển kỹ thuật nhiễu xạ neutron.
1995 Cả hai Đóng góp thực nghiệm vào vật lý lepton.
Martin Lewis Perl Tìm ra tau lepton.
Frederick Reines Thu được neutrino.
1996 David Lee, Douglas D. Osheroff và Robert Coleman Richardson Phát hiện ra tính siêu chảy của helium-3.
1997 Chu Lệ Văn (朱棣文, Steven Chu), Claude Cohen-Tannoudji và William Daniel Phillips Phát triển phương pháp làm lạnh, bẫy nguyên tử bằng ánh sáng laser.
1998 Robert B. Laughlin, Horst Ludwig Störmer và Thôi Kỳ (崔琦, Daniel Chee Tsui) Tìm ra một loại chất lỏng lượng tử mới, giúp giải thích điện tử có điện tích không nguyên.
1999 Gerardus 't Hooft và Martinus J.G. Veltman Sáng tỏ cấu trúc lượng tử của tương tác điện yếu trong vật lý.

Thập niên 2000

2000
Zhores Ivanovich Alferov (Жорес Иванович Алферов) và Herbert Kroemer Phát triển cấu trúc không đồng nhất bán dẫn được dùng trong quang điện tử tốc độ cao.
Jack Kilby Phát minh ra mạch tích hợp.
2001 Eric Allin Cornell, Wolfgang Ketterle và Carl Wieman Thực hiện được thí nghiệm ngưng tụ Bose-Einstein.
2002 Raymond Davis Jr. và Masatoshi Koshiba (小柴 昌俊) Đóng góp vào vật lý thiên văn và thu hạt neutrino.
Riccardo Giacconi Đóng góp vào vật lý thiên văn và tìm ra nguồn tia X vũ trụ.
2003 Alexei Alexeevich Abrikosov (Алексей Алексеевич Абрикосов), Vitaly Lazarevich Ginzburg (Виталий Лазаревич Гинзбург) và Anthony James Leggett Phát triển lý thuyết siêu dẫn và siêu lỏng.
2004 David Gross, H. David Politzer và Frank Wilczek Tìm ra bậc tự do tiệm cận trong tương tác mạnh.
2005 Roy J. Glauber Đóng góp cho lý thuyết lượng tử quang học.
John L. Hall và Theodor W. Hänsch Phát triển spectroscopy với độ chính xác laser.
« Last Edit: 24 Tháng Ba, 2009, 01:24:30 PM by nguyentrongxuyen »

29 Tháng Bảy, 2006, 02:41:23 PM
Reply #1
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Giải Nobel về Vật lý 1901-2004
Dạ Trạch                                                       
15 tháng 12 năm 2004

Nguyên tác: "The Nobel Prize in Physics 1901-2000" cuả Erik B. Karlsson
Dạ Trạch dịch thuật và hiệu đính

Vật lý là gì?


Vật lý được coi là một môn khoa học cơ bản nhất của khoa học tự nhiên. Vật lý nghiên cứu những thành phần cơ bản nhất của vật chất và các tương tác giữa chúng cũng như nghiên cứu về các nguyên tử và việc tạo thành phân tử và chất rắn. Vật lý cố gắng đưa ra những mô tả thống nhất về tính chất của vật chất và bức xạ, bao quát rất nhiều loại hiện tượng. Trong một số ứng dụng, vật lý rất gần với hóa học cổ điển và trong một số ứng dụng khác nó thường liên quan chặt chẽ đến các đối tượng nghiên cứu của các nhà thiên văn học. Các xu hướng của vật lý hiện nay đang hướng đến vi sinh học.
Mặc dù hóa học và thiên văn học là các ngành khoa học hoàn toàn độc lập, nhưng cả hai đều coi vật lý là cơ sở trong nghiên cứu các lĩnh vực, khái niệm và công cụ của các vấn đề khoa học. Phân biệt cái nào là vật lý và hóa học trong một số lĩnh vực thường là rất khó. Điều này cũng được minh chứng vài lần trong lịch sử của các giải Nobel. Dưới đây sẽ nhắc đến một số giải Nobel về hóa học đặc biệt là những giải có liên hệ rất chặt chẽ đến các công trình mà những người đoạt giải Nobel vật lý thực hiện. Đối với thiên văn học, tình huống lại khác vì không có giải Nobel cho thiên văn học nên ngay từ đầu, những phát kiến của thiên văn học được trao giải Nobel về vật lý.
Từ vật lý cổ điển đến vật lý lượng tử
Năm 1901, khi giải Nobel đầu tiên được trao thì các lĩnh vực của vật lý cổ điển đã dựa trên một nền tảng vững chắc do các nhà vật lý và hóa học vĩ đại của thế kỉ thứ 19 tạo nên. Hamilton đã đưa ra những công thức mô tả động học của vật rắn từ những năm 1830. Carnot, Joule, Kelvin và Gibbs đã phát triển nhiệt động học tới mức cực kì hoàn thiện trong nửa cuối của thế kỉ đó.
Các phương trình nổi tiếng của Maxwell đã được chấp nhận như là một mô tả tổng quát về các hiện tượng điện từ và có thể ứng dụng trong bức xạ quang học và sóng radio lúc bấy giờ mới được Hetz phát hiện.
Tất cả mọi thứ, bao gồm cả các hiện tượng sóng, có vẻ như là rất phù hợp với bức tranh vật lý được dựng trên chuyển động cơ học của các thành phần của vật chất tự thể hiện trong các hiện tượng vĩ mô khác nhau. Một số nhữung nhà quan sát cuối thể kỉ 19 cho rằng, những việc cho các nhà vật lý làm tiếp theo là giải quyết những vấn đền nhỏ trong một vấn đề lớn đã được xây dựng gần hết.
Tuy vậy, sự thỏa mãn về bức tranh vật lý đó kéo dài không được bao lâu. Thời điểm bước sang thế kỉ mới là thời điểm quan sát các hiện tượng mà vật lý lúc bấy giờ không lý giải được và những ý tưởng cực mới về cơ sở của vật lý lý thuyết được đưa ra. Chúng ta cần nhìn lại một sự trùng hợp lịch sử mà có thể ngay cả chính Alfred Nobel cũng không thấy trước được, đó là việc trao giải thưởng Nobel đã bắt đầu đúng lúc để có thể ghi công những đóng góp nổi bật mở ra thời đại mới của vật lý vào giai đoạn đó.
Một trong những hiện tượng không giải thích được của vài năm cuối cùng của thế kỉ 19 đó là việc Wilhelm Conrad Rontgen, người được trao giải Nobel vật lý đầu tiên (1901) phát hiện ra tia X vào năm 1895. Lại nữa, năm 1896 Antoine Henri Becquerel phát hiện ra hiện tượng phóng xạ và hai vợ chồng nhà bác học Marie và Pierre Curie tiếp tục nghiên cứu bản chất của hiện tượng này. Lúc bấy giờ, người ta chưa hiểu nguồn gốc của tia X, nhưng người ta nhận ra rằng sự tồn tại của hiện tượng đó che dấu một thế giới các hiện tượng mới (mặc dù lúc đầu người ta chưa thấy những ứng dụng thực tiễn trong việc chẩn đoán bệnh của tia X). Nhờ công trình về hiện tượng phóng xạ, Becquerel vợ chồng Curie được trao giải Nobel năm 1903 (một nửa giải cho Becquerel và một nửa cho vợ chồng Curie). Cùng với công trình của Ernest Rutherford (người đạt giải Nobel về hóa học năm 1908) người ta hiểu rằng thực ra nguyên tử bao gồm một hạt nhân rất nhỏ chứ không phải là một phần tử không có cấu trúc như người ta từng nghĩ như trước đây. Người ta còn thấy một số hạt nhân nguyên tử lại không bền, chúng có thể phát ra các bức xạ anpha, betha và gamma. Đó là cuộc cách mạng lúc bấy giờ, cùng với nhiều công trình vật lý khác, con người đã vẽ ra những bức tranh đầu tiên về cấu trúc nguyên tử.
Năm 1897, Joseph J. Thomson phát hiện các tia phát ra từ ca-tốt trong một ống chân không là những hạt có mang điện tích. Ông đã chứng minh rằng, các tia này gồm những hạt rời rạc mà sau này chúng ta gọi là các hạt điện tử. Ông đã đo tỉ số giữa khối lượng của hạt và điện tích (âm) của hạt đó và thấy rằng giá trị đó chỉ bằng một phần rất nhỏ so với giá trị dự đoán của các nguyên tử mang điện. Và ngay sau đó người ta thấy rằng các hạt có khối lượng nhỏ bé mang điện tích âm đó phải là những viên gạch cùng với hạt nhân mang điện tích dương đã tạo nên tất cả các loại nguyên tử. Thomson nhận giải Nobel vào năm 1906. Trước đó một năm (1905), Phillip E.A. von Lenard đã làm sáng tỏ rất nhiều tính chất thú vị của những tia phát ra từ ca-tốt như là khả năng đi sâu vào những tấm kim loại và tạo ra huỳnh quang. Sau đó, vào năm 1912, Robert A. Millikan lần đầu tiên đo chính xác điện tích của điện tử bằng phương pháp giọt dầu (oil-drop), và điều này dẫn ông đến giải Nobel năm 1923. Millikan cũng được trao giải cho những công trình về hiệu ứng quang điện.
Vào đầu thế kỉ 20, các phương trình của Maxwell đã có mặt được vài chục thập kỉ, nhưng rất nhiều câu hỏi vẫn chưa được giải đáp: môi trường nào là môi trường trung gian dẫn chuyền sóng điện từ (trong đó có cả ánh sáng) và các hạt tải điện có phải là nguyên nhân của sự phát xạ ánh sáng hay không? Albert A. Michelson đã phát triển một phương pháp giao thoa, theo phương pháp này thì khoảng cách giữa hai vật thể có thể được đo bằng số các bước sóng ánh sáng (hoặc là những phần nhỏ của chúng). Điều này làm cho việc xác định chiều dài chính xác hơn trước đó rất nhiều. Rất nhiều năm sau, Văn phòng đo lường quốc tế (Bureau International de Poids et Mesures) ở Paris đã định nghĩa đơn vị mét trên cơ sở số các bước sóng của một bức xạ đặc biệt thay cho định nghĩa trước đây là chiều dài của một tấm platin. Dùng chiếc giao thoa kế đó, Michelson và W. Morley đã tiến hành thí một nghiệm nổi tiếng, thí nghiệm đó kết luận rằng vận tốc của ánh sáng không phụ thuộc vào chuyển động tương đối của nguồn sáng và người quan sát. Thí nghiệm này bác bỏ giả thuyết trước đó coi ê-te (ether) là môi trường truyền ánh sáng. Michelson nhận giải thưởng Nobel năm 1907.

29 Tháng Bảy, 2006, 02:44:18 PM
Reply #2
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Các cơ chế phát xạ ánh sáng bởi các hạt tải điện đã được Hendrik A. Lorentz nghiên cứu. Ông cũng là người đầu tiên áp dụng các phương trình của Maxwell vào việc dẫn điện trong vật chất. Lý thuyết của ông có thể được áp dụng vào bức xạ gây ra bởi dao động giữa các nguyên tử, và vào bối cảnh đó, lý tuyết có thể giải thích một thí nghiệm cực kì quan trọng. Vào năm 1896, Pieter Zeeman khi nghiên cứu về các hiệu ứng điện từ của ánh sáng đã tìm ra một hiện tượng quan trọng, đó là vạch phổ của Natri khi bị đốt cháy trong một từ trường mạnh bị tách thành nhiều vạch. Hiện tượng này có thể được giải thích rất chi tiết bằng lý thuyết của Lorentz khi lý thuyết này được áp dụng cho các dao động của các điện tử. Lorentz và Zeeman chia nhau giải Nobel năm 1902, thậm chí trước cả Thomson (phát hiện ra điện tử). Sau đó, Johannes Stark chứng minh ảnh hưởng trực tiếp của điện trường lên phát xạ ánh sáng nhờ việc phát ra một chùm các nguyên tử (chùm tia a-nốt gồm các nguyên tử hoặc phân tử) trong một điện trường mạnh. Ông đã quan sát được sự tách phức tạp của các vạch phổ cũng như dịch chuyển Doppler phụ thuộc và vận tốc của nguồn phát. Stark nhận giải Nobel năm 1919.Với bối cảnh đó, việc xây dựng một mô hình chi tiết của nguyên tử, một vấn đề đã tồn tại như một khái niệm từ thời cổ đại nhưng được coi là một thành phần không có cấu trúc trong vật lý cổ điển, có thể được thực hiện. Bắt đầu từ giữa thế kỉ 19, người ta đã có một tài liệu thực nghiệm đó là những vạch phổ đặc trưng phát ra trong những vùng có thể nhìn thấy được từ những loại nguyên tử khác nhau. Bức xạ tia X đặc trưng do Charles G. Barkla (Nobel 1917) phát hiện bổ sung thêm cho tài liệu đó. Barkla phát hiện điều đó sau khi Max von Laue (Nobel 1914) xác định bản chất sóng của bức xạ và nhiễu xạ tia X. Phát hiện của Laue trở thành một nguồn thông tin quan trọng về cấu trúc bên trong của nguyên tử.
Tia X đặc trưng của Barkla là những chùm tia thứ cấp, đặc trưng cho mỗi nguyên tố, phát bức xạ từ những ống phát tia X (nhưng không phụ thuộc vào công thức hóa học của mẫu). Karl Manne G. Siegbahn nhận thấy rằng đo phổ tia X đặc trưng của tất cả các nguyên tố sẽ cho biết một cách có hệ thống các lớp điện tử kế tiếp được thêm vào như thế nào khi đi từ các nguyên tố nhẹ tới các nguyên tố nặng. Ông đã thiết kế các máy đo quang phổ cực kì chính xác cho mục đích này. Và nhờ đó người ta xác định được sự khác nhau về năng lượng của các lớp điện tử khác nhau và các qui tắc cho việc dịch chuyển bức xạ giữa các lớp đó. Ông nhận giải Nobel vật lý năm 1924. Tuy vậy, hóa ra là để hiểu sâu hơn cấu trúc của nguyên tử, người ta cần nhiều hơn rất nhiều những khái niệm thông thường của vật lý cổ điển mà khó ai có thể tưởng tượng nổi.
Vật lý cổ điển coi chuyển động là liên tục cũng như việc trao đổi năng lượng cũng là liên tục. Vậy thì tại sao các nguyên tử lại phát ra những bức xạ có một đỉnh cực đại? Ở đây, một vấn đề có nguồn gốc từ cuối thế kỉ thứ 19 đã cho những đầu mối quan trọng để giải thích thắc mắc trên. Wilhelm Wien nghiên cứu về bức xạ của “vật đen” (black-body) từ những vật rắn nóng (tương phản với bức xạ của các nguyên tử khí có phân bố tần số liên tục). Sử dụng điện động học cổ điển (classical electrodynamics), ông đi tới một biểu thức cho phân bố tần số của bức xạ này và cho sự dịch chuyển của bước sóng có cường độ cực đại khi nhiệt độ của một vật đen bị thay đổi (định luật dịch chuyển Wien, rất hiệu quả trong việc xác định nhiệt độ của mặt trời chẳng hạn). Ông được trao giải Nobel năm 1911.

Hình1: (từ trái) Rongent (1845-1923), Thomson(1856-1940), Bohr(1885-1962), và Planck(1858-1947)         

Tuy vậy, Wien không thể rút ra một công thức phân bố phù hợp với thực nghiệm cho cả hai vùng bước sóng dài và bước sóng ngắn. Vấn đề đó vẫn không được giải quyết cho đến khi Max K. E. L. Planck đưa ra một ý tưởng hoàn toàn mới là năng lượng phát xạ chỉ phát ra từng lượng gián đoạn, có một giá trị nhất định gọi là lượng tử (quanta). Một lượng tử năng lượng có giá trị lớn khi bước sóng nhỏ và có giá trị nhỏ khi bước sóng lớn (lượng tử năng lượng bằng hằng số Plank nhân với tần số của lượng tử đó). Đây được coi là sự ra đời của vật lý lượng tử. Wien nhận giả Nobel năm 1911 và Plank nhận ít năm sau đó, vào năm 1918. Các bằng chứng quan trọng chứng minh ánh sáng phát ra theo từng lượng tử năng lượng cũng được củng cố bằng lời giải thích của Albert Eistein về hiệu ứng quang điện (được Hetz quan sát lần đầu tiên vào năm 1887). Hiệu ứng quang điện bao gồm phần mở rộng của lý thuyết Plank. Einstein nhận giải Nobel vật lý năm 1921 (trao giải năm 1922) về hiệu ứng quang điện và về “những đóng góp cho vật lý lý thuyết” (điều đó ám chỉ một bối cảnh khác).
Trong các thí nghiệm sau này, James Franck và Gustav L. Hertz đã chứng minh hiệu ứng quang điện ngược (inverse of the photoelectric effect, tức là khi một điện tử va chạm với một nguyên tử thì cần một năng lượng tối thiểu để sinh ra các lượng tử ánh sáng với năng lượng đặc trưng phát ra từ va chạm đó) và chứng minh tính đúng đắn của lý thuyết Plank và hằng số Plank. Franck và Hertz cùng nhận giải Nobel năm 1926. Cũng vào khoảng thời gian đó, Arthur H. Compton (người nhận nửa giải Nobel vật lý năm 1927) nguyên cứu sự mất mát năng lượng của quang tử (photon, lượng tử sóng điện từ) tia X khi tán xạ lên các hạt vật chất và cho thấy rằng các lượng tử của chùm tia X có năng lượng lớn hơn năng lượng của ánh sáng nhìn thấy 10.000 lần và chúng cũng tuân theo các qui tắc lượng tử. Charles T. R. Wilson (xem dưới đây) nhận một nửa giải Nobel năm 1927 vì tạo ra dụng cụ quan sát tán xạ năng lượng cao có thể được dùng để chứng minh tiên đoán của Compton.
Với khái niệm cơ sở về lượng tử hóa năng lượng, tình hình vật lý đã thúc đẩy những cuộc phiêu lưu tiếp theo vào thế giới bí ẩn của vật lý vi mô. Cũng giống như một số nhà vật lý nổi tiếng trước đó, Niels H. D. Bohr làm việc với mô hình hành tinh nguyên tử trong đó các điện tử quay xung quanh hạt nhân. Ông thấy rằng các vạch phổ sắc nét phát ra từ các nguyên tử có thể được giải thích bằng cách cho rằng điện tử quay xung quanh hạt nhân trên các quĩ đạo tĩnh đặc trưng bởi một mô men góc bị lượng tử hóa (bằng một số nguyên lần hằng số Plank chia cho 2*pi). Ông cũng cho thấy năng lượng phát xạ chính bằng sự khác nhau giữa các trạng thái năng lượng bị lượng tử hóa đó. Giả thiết ông đưa ra có xuất phát điểm từ vật lý cổ điển hơn là từ lý thuyết của Plank. Mặc dầu giả thiết trên chỉ giải thích được một số đặc điểm đơn giản của quang phổ và nguồn gốc của nó nhưng người ta cũng sớm chấp nhận nó vì phương pháp của Bohr là một điểm khởi đầu đúng đắn, ông nhận giải Nobel năm 1922.
Hóa ra là muốn hiểu sâu hơn tính chất của bức xạ và vật chất (cho đến lúc bấy giờ người ta vẫn coi đó là hai thực thể hoàn toàn riêng biệt) người ta cần thêm những tiến bộ về mô tả lý thuyết của thế giới vi mô. Năm 1923, Louis-Victor P. R. de Broglie đã phát biểu rằng các hạt vật chất cũng có những tính chất sóng và sóng điện từ cũng thể hiện những tính chất của các hạt dưới dạng các quang tử. Ông đã phát triển các công thức toán học cho tính lưỡng tính này, trong đó có một công thức mà sau này gọi là “bước sóng de Broglie” cho các hạt chuyển động. Các thí nghiệm ban đầu của Clinton J. Davisson đã chỉ ra rằng thực ra các điện tử thể hiện tính chất phản xạ giống như các sóng khi đập vào một tinh thể và các thí nghiệm này được lặp lại nhiều lần chứng minh giả thiết lưỡng tính của de Broglie. Một thời gian sau George P. Thomson (con trai của J. J. Thomson) đã đưa ra nhiều thí nghiệm đã được cải tiến rất nhiều cho biết hiện tượng tán xạ khi các điện tử năng lượng cao đi sâu vào trong các tấm kim loại. De Broglie nhận giải Nobel năm 1929 và sau đó Davisson và Thomson chia nhau giải Nobel năm 1937.
Điều cần làm là phải đưa ra các phương trình toán học mô tả một lý thuyết mới thay thế cho cơ học cổ điển mà lý thuyết đó giải thích đúng đắn các hiện tượng ở qui mô nguyên tử và bức xạ của chúng. Từ năm 1924 đến 1926 là khoảng thời gian phát triển cao độ trong lĩnh vực này. Erwin Schrödinger phát triển thêm ý tưởng của de Broglie và viết một bài báo cơ bản về “Lượng tử hóa như là một bài toán trị riêng” vào đầu năm 1926. Ông đã tạo ra một cái gọi là “cơ học sóng” (wave mechanics). Nhưng một năm trước đó Werner K. Heisenberg đã bắt đầu một phương pháp toán học hoàn toán khác gọi là “cơ học ma trận” (matrix mechanics) và bằng cách đó ông cũng thu được các kết quả tương tự như các kết quả mà Schrödinger đưa ra sau đó. Cơ học lượng tử mới của Schrodinger và Heisenberg là một sự khởi đầu căn bản từ bức tranh cảm tính của các quĩ đạo cổ điển trong nguyên tử. Nó cũng ngụ ý rằng có những giới hạn tự nhiên trong việc xác định chính xác đồng thời các đại lượng vật lý (hệ thức bất định Heisenberg - Heisenberg's uncertainty relations).

Hình2:(từ trái) Lamb(1913- ), Kusch(1911-1993) Schrödinger(1887-1961), và Dirac(1902-1984)

Hết phần 2

29 Tháng Bảy, 2006, 02:45:45 PM
Reply #3
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Heisenberg được trao giải Nobel năm 1932 cho việc phát triển cơ học lượng tử, trong khi đó Schrödinger và Paul A. M. Dirac cùng nhận giải vào năm sau đó. Cơ học lượng tử của Schrodinger và Heisenberg đúng đối với các vận tốc và năng lượng tương đối thấp của chuyển động “quĩ đạo” (orbital) của các điện tử hóa trị trong nguyên tử. Nhưng các phương trình đó không thỏa mãn các yêu cầu được xác định từ các nguyên lý của Eistein cho các hạt chuyển động nhanh. Dirac đã sửa đổi các công thức khi tính đến lý thuyết tương đối hẹp của Eistein và cho thấy rằng một lý thuyết như vậy không chỉ bao gồm những thông số tương ứng cho sự tự quay của điện tử xung quanh mình nó gọi là spin (do đó giải thích mô men từ nội tại của điện tử và cấu trúc tinh tế quan sát được trong phổ nguyên tử) mà còn tiên đoán sự tồn tại của một loại hạt hoàn toàn mới gọi là các phản hạt (antiparticles) có khối lượng bằng khối lượng của điện tử nhưng mang điện tích dương. Phản hạt đầu tiên của điện tử do Carl D. Anderson (được trao một nửa giải Nobel năm 1936) phát hiện năm 1932 được gọi là positron.Giải Nobel những năm sau đó được trao cho những người có đóng góp quan trọng khác cho sự phát triển của cơ học lượng tử. Max Born, thầy của Heisenberg vào những năm đầu của thập niên 20 có những công trình quan trọng về mô tả toán học và giải thích vật lý. Ông nhận một nửa giải nobel vào năm 1954 cho công trình của ông về ý nghĩa thống kê của hàm sóng. Wolfgang Pauli đã đưa ra nguyên lý loại trừ (exclusion principle – mỗi trạng thái lượng tử chỉ có thể có một điện tử mà thôi) dựa trên cơ sở lý thuyết bán cổ điển của Bohr. Sau này, người ta cũng thấy nguyên lý Pauli liên quan đến tính đối xứng của hàm sóng của các hạt có spin bán nguyên nói chung gọi là các hạt fermion để phân biệt với các hạt boson có spin là một số nguyên lần của hằng số Plank chia cho 2*pi. Nguyên lý loại trừ có nhiều hệ quả quan trọng trong nhiều lĩnh vực của vật lý và Pauli nhận giải Nobel năm 1945.
Việc nghiên cứu spin của điện tử tiếp tục mở ra những chân trời mới trong vật lý. Các phương pháp chính xác để xác định mô men từ của các hạt tự quay đã được phát triển vào những năm 30 và 40 cho nguyên tử và hạt nhân (do Stern, Rabi, Bloch và Purcell thực hiện, xem phần dưới). Năm 1947 họ đã đạt đến một độ chính xác mà Polykarp Kusch có thể phát biểu rằng mô men từ của một điện tử không có giá trị đúng như Dirac tiên đoán mà khác đi một đại lượng rất nhỏ. Vào cùng thời gian đó Willis E. Lamb cũng nghiên cứu một vấn đề tượng tự về spin của điện tử tương tác với các trường điện từ bằng việc nghiên cứu cấu trúc tinh tế (fine structure) của quang phổ phát ra từ nguyên tử Hidro với các phương pháp cộng hưởng tần số radio có độ phân giải rất cao. Ông quan sát thấy rằng sự tách cấu trúc tinh tế luôn luôn sai khác với giá trị của Dirac một lượng đáng kể. Các kết quả này làm cho người ta phải xem lại các khái niệm cơ bản đằng sau những ứng dụng lý thuyết lượng tử vào các hiện tượng điện từ, một lĩnh vực đã được Dirac, Heisenberg và Pauli khởi đầu nhưng vẫn còn một vài khiếm khuyết. Kusch và Lamb cùng nhận giải Nobel năm 1955.
Trong điện động học lượng tử (quantum electrodynamics – gọi tắt là DDHLT), lý thuyết nhiễu loạn lượng tử mô tả các hạt tích điện tương tác thông qua trao đổi các quang tử. Mô hình cũ của DDHLT chỉ bao gồm trao đổi quang tử riêng lẻ, nhưng Sin-Itiro Tomonaga, Julian Schwinger và Richard P. Feynman nhận ra rằng tình huống lại phức tạp hơn rất nhiều vì tán xạ điện tử-điện tử có thể bao gồm trao đổi một vài quang tử. Một điện tích điểm “trần trụi” không tồn tại trong bức tranh của họ. Điện tích luôn tạo ra một đám các cặp hạt-phản hạt ảo (virtual particle-antiparticle) ở xung quanh nó, do đó, mô men từ hiệu dụng của nó thay đổi và thế năng Coulomb cũng bị biến đổi tại các khoảng cách ngắn. Các tính toán từ mô hình này đã tái tạo lại các dữ liệu thực nghiệm của Kusch và Lamb với một độ chính xác ngạc nhiên và mô hình DDHLT mới được coi là một lý thuyết chính xác nhất đã từng có. Tomonaga, Schwinger và Feynman cùng nhận giải Nobel vật lý năm 1965.
Bước phát triển này của DDHLT có một tầm quan trọng vĩ đại nhất trong việc mô tả các hiện tượng vật lý năng lượng cao. Khái niệm sinh cặp từ trạng thái chân không của một trường lượng tử (quantized field) là một khái niệm cơ sở trong lý thuyết trường hiện đại của các tương tác mạnh và của sắc động học lượng tử (quantum chromodynamics).
Khía cạnh cơ bản khác của cơ học lượng tử và lý thuyết trường lượng tử là tính đối xứng của các hàm sóng và các trường. Các tính chất đối xứng tương ứng với trao đổi hạt đồng nhất thì dựa trên nguyên lý loại trừ Pauli nói ở trên, nhưng các đối xứng tương ứng với các biến đổi không gian cũng trở nên quan trọng không kém. Năm 1956, Lý Chính Đạo (Tsung-Dao Lee) và Dương Chấn Ninh (Chen Ning Yang) đã chỉ ra rằng các tương tác vật lý có thể không tuân theo đối xứng gương (tức là, chúng có thể khác nhau khi hệ tọa độ quay trái hoặc quay phải). Điều này có nghĩa là tính chất “chẵn lẻ” của hàm sóng, kí hiệu là “P” không được bảo toàn khi hệ chịu một tương tác như vậy và tính chất đối xứng gương có thể bị thay đổi. Công trình của hai ông là điểm khởi đầu cho một nghiên cứu chuyên sâu về các hiệu ứng như vậy và ngay sau đó người ta thấy rằng phân rã của hạt betta và pi thành hạt muy do tương tác yếu gây ra không bảo toàn tính chẵn lẻ (xem thêm phần dưới). Lý và Dương cùng nhận giải Nobel năm 1957. (*Bổ sung: các định luật bảo toàn đều được rút ra từ các tính chất đối xứng. Tính đối xứng và đồng nhất của không gian và thời gian làm cho năng lượng, xung lượng, mô men xung lượng được bảo toàn. Do đó, tính đối xứng và bảo toàn liên hệ chặt chẽ – ND*)
Các tính chất đối xứng khác của cơ học lượng tử có liên hệ với sự thay thế của các hạt bằng các phản hạt (gọi là giao hoán điện tích – charge conjugation, kí hiệu là “C”). Trong các trường hợp chuyển đổi phóng xạ mà Lý và Dương nghiên cứu, người ta thấy rằng mặc dù tính chẵn lẻ không được bảo toàn, nhưng vẫn tồn tại một đối xứng trong đó các hạt và phản hạt phá vỡ tính chẵn lẻ theo các cách trái ngược nhau hoàn toàn và do đó toán tử tổ hợp C*P bảo toàn tính đối xứng. Nhưng nguyên lý bảo toàn C*P đó kéo dài không được bao lâu cho đến khi James W. Cronin và Val L. Fitch phát hiện sự phân rã của hạt “meson K” vi phạm nguyên lý trên, mặc dù sự vi phạm đó trong một qui mô rất nhỏ. Cronin và Fitch đưa ra phát hiện này vào năm 1964 và họ cùng nhau nhận giải Nobel năm 1980. Hệ quả của phát hiện trên (bao gồm các câu hỏi về tính đối xứng của các quá trình tự nhiên khi đảo ngược thời gian – gọi là đối xứng T) vẫn được thảo luận cho đến ngày nay và đã chạm đến những nền tảng sâu nhất của vật lý lý thuyết bởi vì đối xứng P*C*T luôn được coi là bảo toàn.
Người ta biết rằng trường điện từ có tính chất gọi là “đối xứng chuẩn” (gauge symmetry), tức là các phương trình trường giữ nguyên dạng ngay cả khi các thế năng điện từ được nhân lên với các hằng số pha cơ học lượng tử nhất định. Người ta không biết tương tác yếu (weak interaction) có tính chất như thế cho đến những năm 1960, khi Sheldon L. Glashow, Abdus Salam, và Steven Weinberg đưa ra lý thuyết thống nhất tương tác yếu và tương tác điện từ. Họ cùng nhau chia giải Nobel năm 1979 về lý thuyết thống nhất này và đặc biệt là tiên đoán của họ về một loại tương tác yếu đặc biệt được điều hòa bởi “dòng neutron – neutron current” đã được thực nghiệm kiểm chứng mới gần đây. Giải Nobel vật lý cuối cùng của thế kỉ 20 được trao cho Gerhardus 't Hooft và Martinus J. G. Veltman. Họ đã tìm ra cách để tái chuẩn hóa lý thuyết “điện-yếu” (electro-weak), và loại bỏ các điểm kì dị trong các tính toán lượng tử (giống như DDHLT đã giải quyết bài toán với tương tác Coulomb). Công trình của họ cho phép tính toán chi tiết đóng góp của tương tác yếu vào tương tác của các hạt nói chung, chứng minh tính hiệu quả của các lý thuyết dựa trên bất biến chuẩn cho tất cả các tương tác vật lý cơ bản.
Hết phần 3

29 Tháng Bảy, 2006, 02:47:50 PM
Reply #4
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Cơ học lượng tử và phần mở rộng của nó là lý thuyết trường lượng tử là một trong những thành tựu vĩ đại của thế kỉ 20. Bản phác thảo con đường từ vật lý cổ điển đến vật lý hiện đại đã dẫn chúng ta đi được một chặng đường dài đến một bức tranh cơ bản và thống nhất về các hạt và các lực trong tự nhiên. Nhưng vẫn còn rất nhiều việc phải làm và cái đích vẫn còn ở xa phía trước. Ví dụ còn phải thống nhất lực điện-yếu với lực hạt nhân “mạnh” và với lực hấp dẫn. Nhưng ở đây, người ta nhận thấy rằng mô tả lượng tử của thế giới vi mô có một ứng dụng cơ bản khác: đó là tính toán các tính chất hóa học của các hệ phân tử (đôi lúc được mở rộng cho sinh học phân tử) và của cấu trúc chất rắn, những ngành mà đã thu được một số giải Nobel về vật lý và hóa học.Từ thế giới vi mô đến thế giới vĩ mô
Phần trước “Từ vật lý cổ điến đến vật lý lượng tử” đã đưa chúng ta đi từ các hiện tượng của thế giới vĩ mô mà chúng ta gặp hàng ngày tới thế giới lượng tử của các nguyên tử, điện tử và hạt nhân. Bắt đầu từ nguyên tử, các công trình của những người đạt giải Nobel đã cho chúng ta hiểu biết sâu sắc hơn thế giới hạ nguyên tử (subatomic) và các thành phần nhỏ bé của nó.
Chúng ta cũng nhận thấy rằng, chỉ trong nửa đầu thế kỉ 20, khám phá tính chất của thế giới vi mô của các hạt và tương tác mới là cần thiết để hiểu lịch sử cấu thành và tiến hóa của những cấu trúc lớn hơn của vũ trụ - thế giới vĩ mô. Tại thời điểm hiện tại, vật lý, vật lý thiên văn và vũ trụ học liên hệ với nhau rất chặt chẽ, dưới đây sẽ trình bày một vài ví dụ.
Một mối liên hệ khác liên kết các thực thể nhỏ nhất và lớn nhất trong vũ trụ của chúng ta là lý thuyết tương đối của Albert Einstein. Einstein đưa ra lý thuyết tương đối hẹp của mình lần đầu tiên vào năm 1905 (special theory of relativity) với phương trình cho biết mối liên hệ giữa khối lượng và năng lượng E=mc2. Và vào thập kỉ tiếp theo, ông tiếp tục đưa ra lý thuyết tương đối rộng (general theory of relativity) liên hệ lực hấp dẫn với cấu trúc của không gian và thời gian. Tất cả các tính toán khối lượng hiệu dụng của các hạt năng lượng cao, của các biến đổi năng lượng trong phân rã phóng xạ cũng như các tiên đoán của Dirac về sự tồn tại của phản hạt, đều dựa trên lý thuyết tương đối của ông. Lý thuyết tương đối rộng là cơ sở cho các tính toán chuyển động trên thang vĩ mô của vũ trụ, kể cả giả thiết về tính chất của hố đen. Eistein nhận giải Nobel vào năm 1922 lại do công trình về hiệu ứng quang điện thể hiện bản chất hạt của ánh sáng. (*Có lẽ ủy ban trao giải thưởng đã quá thận trọng khi không trao giải Nobel cho ông về lý thuyết tương đối. Họ sợ rằng, một lý thuyết quan trọng như vậy, nếu sai có thể để lại một hậu quả rất lớn, chính vì thế Eistein được trao giải vì hiệu ứng quang điện, một vấn đề kém quan trọng hơn nhiều so với thuyết tương đối - ND*).
Các nghiên cứu của Becquerel, vợ chồng Curie và Rutherford làn nảy sinh các câu hỏi: đâu là nguồn năng lượng của hạt nhân phóng xạ để có thể duy trì việc phát xạ anpha, betha và gamma trong khoảng thời gian rất dài mà một vài người trong số họ đã quan sát được? hạt anpha là gì và hạt nhân có tạo thành từ hạt này hay không? Câu hỏi đầu tiên (có vẻ như là vi phạm định luật bảo toàn năng lượng, một trong những định luật quan trọng nhất của vật lý) đã có câu trả lời từ lý thuyết biến tố (transmutation theory) của Rutherford và Frederick Soddy (Nobel hóa học 1921). Họ đã theo dõi rất chi tiết một chuỗi các phân rã phóng xạ khác nhau và so sánh năng lượng phát ra với sự thay đổi về khối lượng của hạt nhân mẹ và hạt nhân con. Họ tìm thấy rằng hạt nhân thuộc một nguyên tố hóa học có thể có các khối lượng khác nhau gọi là các “đồng vị” (isotope). Một giải Nobel cũng được trao vào năm 1922 cho Francis W. Aston về việc tách phổ-khối lượng (mass-spectroscopic) của một số lớn các đồng vị của các nguyên tố không phóng xạ. Cùng lúc đó Marie Curie cũng nhận giải Nobel lần thứ hai (lần này về hóa học) về phát hiện ra các nguyên tố hóa học radium và polonium.
Khối lượng của các đồng vị đều là một số nguyên lần khối lượng của proton, proton do Rutherford phát hiện lần đầu tiên khi ông chiếu tia anpha và hạt nhận nguyên tử Ni-tơ. Nhưng các đồng vị không thể chỉ được tạo thành từ các proton được vì mỗi nguyên tố hóa học chỉ có một giá trị tổng điện tích hạt nhân. Thông thường các proton chỉ chiếm không đến một nửa khối lượng hạt nhân, điều đó có nghĩa là một số thành phần không mang điện cũng có mặt trong hạt nhân. James Chadwick lần đầu tiên tìm thấy chứng cứ cho hạt đó, gọi là hạt neutron khi ông nghiên cứu các phản ứng hạt nhân năm 1932. Ông nhận giải Noebel vật lý năm 1935.
Ngay sau phát hiện của Chadwick, Enrico Fermi và một số người khác cũng bắt tay vào nghiên cứu neutron như là một phương pháp để tạo ra các phản ứng hạt nhân mà có thể gây ra phóng xạ “nhân tạo”. Fermi thấy rằng xác suất của các phản ứng cảm ứng-hạt nhân (neutron-induced reactions, không bao gồm biến đổi nguyên tố) tăng lên khi neutron bị làm chậm đi và điều này cũng đúng cho các nguyên tố nặng giống như với các nguyên tố nhẹ, trái ngược với phản ứng cảm ứng các hạt mang điện (*ví dụ như proton*). Ông nhận giải Nobel vật lý năm 1938.
Một nhánh của vật lý gọi là “vật lý hạt nhân” đã được hình thành dựa trên giả thiết hạt nhân được tạo thành từ các proton và neutron và một vài thành tựu quan trọng đã được ghi nhận bằng các giải Nobel. Ernest O. Lawrence, người nhận giải Nobel vật lý năm 1939 đã xây máy gia tốc đầu tiên trong đó các hạt được gia tốc dần dần bằng việc gia tăng năng lượng cho hạt sau mỗi vòng quay trong từ trường. Bằng các máy gia tốc này ông có thể gia tốc các hạt nhân tới các năng lượng cao mà ở đó các phản ứng hạt nhân có thể xảy ra và ông đã thu được kết quả mới rất quan trọng. Ngài John D. Cockcroft và Ernest T. S. Walton đã gia tốc các hạt bằng việc tác động trực tiếp một điện thế rất cao và các ông cũng được trao giải vào năm 1951 cho công trình nghiên cứu về biến tố (*nguyên tố mẹ biến đổi thành nguyên tố con thông qua phóng xạ*).
Otto Stern nhận giải Nobel vật lý năm 1943 cho các phương pháp thực nghiệm của ông để nghiên cứu tính chất từ của hạt nhân, đặc biệt là xác định mô men từ của proton. Isidor I. Rabi làm tăng độ chính xác lên hai bậc trong việc xác định mô men từ vủa hạt nhân bằng kĩ thuật cộng hưởng tần số radio, và do đó, ông nhận giải Nobel vật lý năm 1944. Các tính chất từ của hạt nhân cung cấp các thông tin quan trọng để hiểu chi tiết proton và neutron tạo nên hạt nhân như thế nào. Sau đó, vào nửa cuối của thế kỉ một vài nhà vật lý lý thuyết được trao giải cho những công trình về mô hình hóa lý thuyết các hệ nhiều hạt như vậy: Eugene P. Wigner (nửa giải), Maria Goeppert-Mayer (một phần tư) and J. Hans D. Jensen (một phần tư) vào năm 1963 và Aage N. Bohr, Ben R. Mottelson và L. James Rainwater vào năm 1975. Chúng ta sẽ trở lại những công trình này trong phần “Từ đơn giản đến phức tạp”.
Ngay từ năm 1912 Victor F. Hess (giải Nobel năm 1936 cùng với Carl D. Anderson) thấy rằng các bức xạ có khả năng đi sâu vào vật chất có thể đến với chúng ta từ khoảng không ngoài vũ trụ. “Bức xạ vũ trụ” này được ghi nhận bằng các buồng ion hóa và sau này là buồng mây (cloud chamber) Wilson (người được nhắc đến ở phần trước). Các tính chất của các hạt có thể phỏng đoán từ các vạch cong của các hạt để lại trong buồng ion hóa dưới tác dụng của từ trường mạnh bên ngoài. Theo cách đó, C. D. Anderson đã phát hiện ra positron. Anderson và Patrick M. S. Blackett cho thấy rằng, tia gamma (cần một năng lượng quang tử ít nhất bằng hai lần me*c2, me là khối lượng điện tử) có thể sinh ra các cặp điện tử-phản điện tử và ngược lại, điện tử và phản điện tử có thể hủy nhau tạo ra chính tia gamma bị mất đi. Blackett nhận giải Nobel vật lý năm 1948 cho việc phát triển buồng mây sau này và các phát minh mà công đã thực hiện đển làm việc đó.
Mặc dù sau này, các máy gia tốc được phát triển nhiều, bức xạ vũ trụ vẫn là nguồn các hạt năng lượng cao chủ yếu trong vài thập kỉ (và hạt từ bức xạ vũ trụ có năng lượng lớn hơn năng lượng của các hạt tạo ra từ các máy gia tốc lớn nhất trên trái đất, mặc dù cường độ của bức xạ vũ trụ rất nhỏ) và nó đã cung cấp những hình ảnh ban đầu của một thế giới hạ hạt nhân mà lúc bấy giờ con người hoàn toàn chưa biết. Một loại hạt mới gọi là meson được phát hiện năm 1937 có khối lượng xấp xỉ 200 lần khối lượng điện tử (nhưng nhẹ hơn proton 10 lần). Năm 1946, Cecil F. Powell đã làm sáng tỏ hiện tượng trên và cho rằng thực ra là có nhiều hơn một loại hạt như vậy tồn tại. Một trong số đó có tên là “meson pi” phân rã thành một hạt khác gọi là “meson muy”. Powell nhận giải Nobel vật lý năm 1950.
Lúc bấy giờ các nhà lý thuyết đang nghiên cứu về lực mà giữ proton và neutron lại trong hạt nhân. Năm 1935, Hideki Yukawa giả thiết rằng lực tương tác “mạnh” (strong force) có thể được truyền bằng các hạt trao đổi (*có hai loại hạt: hạt thực có spin bán nguyên và hạt truyền tương tác hay còn gọi là hạt trao đổi, hạt có spin nguyên, ví dụ hạt gravion là hạt truyền tương tác hấp dẫn – ND*), giống như lực điện từ được giả thiết được truyền thông qua trao đổi các quang tử ảo trong lý thuyết trường lượng tử. Yukawa cho rằng một hạt như vậy phải có khối lượng khoảng 200 lần khối lượng của điện tử để giải thích tầm tác dụng ngắn của lực tương tác mạnh mà thực nghiệm tìm ra. Hạt meson pi mà Powell tìm ra có các tính chất phù hợp để có thể là “hạt Yukawa”. Ngược lại, hạt meson muy lại có các tính chất hoàn toàn khác (và tên của nó sau này được đổi thành “muon”). Yukawa nhận giải thưởng Nobel vật lý năm 1949. Mặc dù các nghiên cứu sau này chỉ ra rằng cơ chế của lực tương tác mạnh phức tạp hơn bức tranh của Yukawa rất nhiều nhưng ông vẫn được coi là người tiên phong trong nhiên cứu các hạt truyền tương tác mạnh.
Hết phần 4

29 Tháng Bảy, 2006, 02:49:16 PM
Reply #5
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Có thêm các hạt mới được phát hiện vào những năm 1950, từ bức xạ vũ trụ cũng như từ các va chạm của các hạt được gia tốc. Vào cuối những năm 50, các máy gia tốc có thể đạt năng lượng vài tỉ eV (electron-volt), tức là các cặp hạt với khối lượng bằng khối lượng của proton có thể được tạo ra từ chuyển đổi năng lượng-khối lượng. Phương pháp này được nhóm nghiên cứu của Owen Chamberlain và Emilio Segrè sử dụng khi lần đầu tiên họ đã xác định và nghiên cứu phản proton vào năm 1955 (họ chia nhau giải Nobel năm 1959). Các máy gia tốc năng lượng cao cũng cho phép cũng cho phép nghiên cứu cấu trúc của proton và neutron chi tiết hơn trước đó rất nhiều và Robert Hofstadter có thể phân biệt chi tiết cấu trúc điện từ của các nucleon nhờ quan sát tán xạ của chúng lên các điện tử năng lượng cao. Ông nhận nửa giải Nobel vật lý năm 1961.Hạt này kế tiếp hạt kia, các hạt meson mới và các phản hạt tương ứng của chúng đã xuất hiện nhờ các vết trên các phim chụp hoặc các máy thu hạt tích điện. Sự tồn tại của hạt neutrino tiên đoán từ lý thuyết của Pauli vào những năm 30 cũng đã được ghi nhận. Các bằng chứng trực tiếp thực nghiệm đầu tiên về hạt neutrino được C. L. Cowan và Frederick Reines cung cấp vào năm 1957 nhưng mãi đến năm 1995, công trình đó mới được trao một nửa giải Nobel (lúc đó Cowan đã chết, ông chết năm 1984). Neutrino cũng có mặt trong các quá trình liên quan đến tương tác “yếu” (như là phân rã của hạt betha và hạt meson pi thành hạt muon) và khi cường độc chùm hạt tăng lên, các máy gia tốc có thể tạo ra các chùm neutrino thứ cấp. Leon M. Lederman, Melvin Schwartz và Jack Steinberger đã phát triển phương pháp này vào những năm 60 và chứng minh rằng hạt neutrino đi kèm trong phân rã meson pi thành muon không đồng nhất với các neutrino liên quan đến các điện tử trong phân rã hạt betha, chúng là hai hạt riêng biệt gọi là hạt “neutrino điện tử” và “neutrino muon”.
Bây giờ, các nhà vật lý có thể bắt đầu phân biệt một số thứ tự trong các hạt: hạt điện tử (e), hạt muon (muy), neutrino điện tử (nuy e), neutrino muon (nuy muy) và các phản hạt của chúng đã được tìm thấy và chúng thuộc cùng một lớp gọi là “lepton”. Các hạt trên không tương tác bởi lực tương tác mạnh, ngược lại, các hạt proton, neutron, meson và hyperon (tập hợp các hạt có khối lượng lớn hơn khối lượng của proton) lại được xác định bởi lực tương tác mạnh. Các hạt lepton được mở rộng khi Martin L. Perl và nhóm nghiên cứu của ông đã phát hiện ra hạt lepton “tau” có khối lượng lớn hơn điện tử và muon. Perl chia giải Nobel với Reines vào năm 1995.
Tất cả các lepton vẫn được coi là các hạt cơ bản, tức là chúng giống như các điểm và không có cấu trúc nội, nhưng đối với proton,… thì lại không phải vậy. Murray Gell-Mann và những người khác cố gắng phân loại các hạt tương tác rất mạnh (gọi là các “hardron”) thành các nhóm có các liên hệ và kiểu tương tác giống nhau. Gell-Mann nhận giải Nobel năm 1969. Hệ thống của ông dựa trên giả thiết rằng tất cả các hạt đều được tạo thành từ các hạt nguyên tố gọi là các hạt “quark”. Bằng chứng thực về việc các nucleon được tạo thành từ các hạt giống như quark đến từ công trình của Jerome I. Friedman, Henry W. Kendall và Richard E. Taylor. Họ “nhìn thấy” các hạt cứng bên trong các lepton khi nghiên cứu tán xạ không đàn hồi của các điện tử (các điện tử có năng lượng lớn hơn năng lượng mà Hofstadter có thể dùng trước đó) lên các lepton. Do đó, họ cùng nhau chia giải Nobel năm 1990.
Người ta hiểu rằng tất cả các hạt tương tác mạnh đều được tạo thành từ các quark. Vào giữa những năm 70, một hạt có thời gian sống rất ngắn được phát hiện một cách độc lập bởi nhóm của Burton Richter và Samuel C. C. Ting. Đó là một loại hạt quark chưa được biết vào lúc đó và được đặt tên là “đẹp” (charm). Hạt quark này không có mối liên hệ nào đến hệ thống các hạt cơ bản và Burton và Ting chia nhau giải Nobel năm 1976. Mô hình chuẩn trong vật lý hạt phân chia các hạt thành 3 họ, họ thứ nhất gồm: 2 quark (và các phản quark) và hai lepton, trong mỗi lepton đều có các quark “thuận” (up) và “nghịch” (down), điện tử và neutrino điện tử; họ thứ hai gồm: quark “lạ” (strange) và quark “đẹp”, muon và neutrino muon; họ thứ ba gồm: quark thuận, quark ngược, tau và tau neutrino. Các hạt truyền tương tác trong tương tác điện yếu là các quang tử, hạt Z và hạt boson W và trong tương tác mạnh là các hạt gluon.
Năm 1983, Carlo Rubbia và nhóm nghiên cứu của ông đã chứng minh sự tồn tại của các hạt W và Z bằng buồng va chạm proton-phản proton với năng lượng đủ cao để tạo ra các hạt rất nặng đó. Rubbia chia giải năm 1984 với Simon van der Meer, người có những phát minh quan trọng trong việc xây dựng buồng va chạm đó. Họ cũng suy đoán rằng có các hạt khác có thể được tạo ra tại các năng lượng cao hơn năng lượng của các máy gia tốc hiện thời, nhưng đến giờ không có bằng chứng thực nghiệm nào về điều đó.
Vũ trụ học là một ngành khoa học nghiên cứu về cấu trúc và tiến hóa của vũ trụ chúng ta và các đối tượng trên nấc thang vĩ mô trong đó. Các mô hình được xây dụng trên các tính chất của các hạt cơ bản đã biết và các tương tác của chúng cũng như tính chất của không-thời gian và hấp dẫn. Mô hình vụ nổ lớn mô tả một kịch bản có thể cho sự tiến hóa của vũ trụ tại những thời điểm đầu tiên. Một trong những tiên đoán của mô hình đó là sự tồn tại của nền bức xạ vũ trụ mà đã được Arno A. Penzias và Robert W. Wilson tìm ra vào năm 1960. Họ cùng nhận giải Nobel vật lý năm 1978. Bức xạ này là tàn dư của các quá trình va chạm được giả thiết xuất hiện vào các giai đoạn rất sớm sau vụ nổ lớn. Nhiệt độ cân bằng tại thời kì hiện tại của vũ trụ là 3 độ Kenvin. Nhiệt đó đó gần như đồng nhất theo tất cả các hướng quan sát khác nhau; các sai khác nhỏ khỏi giá trị đồng nhất đang được nghiên cứu và sẽ nói cho chúng ta biết nhiều hơn về lịch sử sớm nhất của vũ trụ của chúng ta.
Khoảng không vũ trụ được ví như một đấu trường lớn cho các hạt tương tác với nhau vì ở đó các điều kiện đặc biệt (mà không thể tạo ra trong một phòng thí nghiệm trên trái đất) có thể được tạo ra một cách tự phát. Các hạt có thể được gia tốc tới các năng lượng cao hơn bất kì máy gia tốc nào trên trái đất, các phản ứng hạt nhân xảy ra bên trong các ngôi sao, và lực hấp dẫn có thể nén các hạt đến mật độ cực cao. Hans A. Bethe lần đầu tiên mô tả chu kì Hydro và các-bon trong đó năng lượng được giải phóng trong các ngôi sao bởi sự kết hợp của proton thành hạt nhân Hê-li. Vì đóng góp này, ông nhận giải Nobel vật lý vào năm 1967.
Subramanyan Chandrasekhar đã tính toán lý thuyết quá trình tiến hóa của các ngôi sao, đặc biệt là các ngôi sao sẽ kết thúc cuộc đời của mình ở một trạng thái gọi là “sao lùn trắng” (white dwarf). Dưới một số điều kiện đặc biệt, sản phẩm cuối cùng có thể là “sao neutron”, một vật thể cực đặc trong đó tất cả các proton biến thành neutron. Trong các vụ nổ siêu sao (supernova), các nguyên tố nặng được tạo ra trong quá trình tiến hóa của các sao sẽ bay vào trong khoảng không vũ trụ. William A. Fowler đã làm sáng tỏ rất chi tiết cả về mặt lý thuyết và thực nghiệm (sử dụng các máy gia tốc) các phản ứng hạt nhân quan trọng nhất trong các ngôi sao và sự hình thành các nguyên tố nặng. Fowler và Chandrasekhar cùng nhận giải Nobel vật lý năm 1983.
Ánh sáng nhìn thấy và bức xạ vũ trụ không phải là các sóng điện từ duy nhất mà có thể đến với chúng ta từ khoảng không vũ trụ. Tại các bước sóng dài hơn, thiên văn vô tuyến cung cấp các thông tin về các vật thể vũ trụ mà chúng ta không thể quan sát được bằng phổ quang học. Ngài Martin Ryle đã phát triển một phương pháp trong đó các tín hiệu từ vài kính thiên văn đặt cách xa nhau có thể kết hợp với nhau để làm tăng độ phân giải của bản đồ nguồn sóng radio từ bầu trời. Antony Hewish và nhóm nghiên cứu của ông đã thực hiện một phát minh rất ngẫu nhiên vào năm 1964 khi sử dụng kính thiên văn của Ryle: các vật thể không xác định gọi là pulsar phát ra các xung tần số sóng radio với tốc độ lặp lại rất xác định. Những vật thể này ngay sau đó được xác định là các sao neutron, hoạt động như các ngọn hải đăng quay rất nhanh phát ra sóng radio bởi vì chúng là những cục nam châm rất mạnh. Ryle và Hewish chia giải Nobel vật lý năm 1974.
Năm 1974 cuộc tìm kiếm pulsar là đối tượng chính của các nhà thiên văn vô tuyến, nhưng một bất ngờ khác đã đến vào mùa hè năm đó khi Russell A. Hulse và Joseph H. Taylor, Jr. đã chú ý đến sự điều biến chu kì của tần số các xung của một pulsar mới được phát hiện gọi là PSR 1913+16. Đó chính là pulsar đôi đầu tiên được ghi nhận, nó được đặt tên như vậy bởi vì sao neutron phát ra sóng radio là một thành phần trong một hệ sao đôi có kích thước gần bằng nhau. Các quan sát trên 20 năm về hệ sao này cho thấy bằng chứng của sóng hấp dẫn. Sự suy giảm của tần số quay rất phù hợp với các tính toán dựa trên lý thuyết của Einstein về mất mát năng lượng gây ra do phát ra sóng hấp dẫn. Hulse và Taylor chia nhau giải Nobel vật lý vào năm 1993. Tuy vậy việc thu trực tiếp sóng hấp dẫn trên trái đất vẫn chưa được thực hiện.
Hết phần 5

29 Tháng Bảy, 2006, 02:50:23 PM
Reply #6
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Từ đơn giản đến phức tạpNếu tất cả các tính chất của các hạt cơ bản cũng như các lực tương tác giữa chúng đã được biết rất chi tiết thì liệu có thể đoán được tính chất của các hệ gồm các hạt như vậy không? Việc tìm kiếm các thành tố cơ bản của tự nhiên và tìm kiếm các mô tả lý thuyết tương tác giữa chúng (ở tầm vĩ mô cũng như vi mô) đã được khuyến khích một phần bởi một học thuyết giản hóa luận (reductionistic). Tất cả các nhà khoa học không cho rằng có tồn tại một phương pháp tổng hợp ngay cả về mặt nguyên lý. Nhưng thậm chí nếu nó đúng thì các tính toán tính chất của hệ phức cũng nhanh chóng trở thành bất khả thi khi số hạt và tương tác trong hệ tăng lên. Do đó người ta mô tả hệ nhiều hạt phức bằng các mô hình đơn giản hóa, trong đó, chỉ các đặc điểm quan trọng nhất của các thành phần các hạt và tương tác được dùng như là các điểm khởi đầu. Người ta thường xuyên thấy rằng các hệ phức thể hiện các đặc điểm được gọi là các “tính chất chung” mà không thể đoán được từ các tương tác cơ bản giữa các thành phần của chúng.
Hạt nhân nguyên tử
Các hệ phức đầu tiên từ quan điểm của các nhà giản hóa luận là thành phần cấu thành hạt nhân, tức là các neutron và proton được tạo thành từ các quark và gluon. Hệ thứ hai là các hạt nhân nguyên tử, theo một phép gần đúng bậc một, được tạo thành từ các hạt nucleon. Mô hình đầu tiên về cấu trúc hạt nhân là mô hình các lớp hạt nhân, do Maria Goeppert-Mayer và Johannes D. Jensen đưa ra vào cuối những năm 40, họ nhận thấy rằng ít nhất đối với các hạt nhân với hình gần như hình cầu thì các nucleon bên ngoài cùng cũng lấp đầy các mức năng lượng giống như các điện tử trong nguyên tử. Tuy vậy, trật tự của các nucleon lại khác với các điện tử và được xác định bởi một thế năng chung và bởi sự kết cặp spin-quĩ đạo rất mạnh của các lực hạt nhân. Mô hình của họ giải thích tại sao hạt nhân lại đặc biệt ổn định với một số xác định (magic number – con số kì diệu) các proton. Họ chia nhau giải Nobel vật lý năm 1963 cùng với Eugene Wigner, người đã công thức hóa các nguyên lý đối xứng cơ bản rất quan trọng trong vật lý hạt nhân và vật lý hạt.
Hạt nhân có số nucleon khác với con số kì diệu thì lại không phải là hình cầu. Niels Bohr đã từng nghiên cứu mô hình giọt chất lỏng áp dụng cho các hạt nhân bị biến dạng như vậy (có thể có dạng hình e-líp), và vào năm 1939 người ta thấy rằng nếu kích thích các hạt nhân bị biến dạng mạnh có thể dẫn đến sự phân chia hạt nhân, tức là hạt nhân bị phá vỡ thành hai mảnh lớn. Otto Hahn nhận giải Nobel hóa học năm 1944 cho phát hiện quá trình mới này. Hình phi cầu của hạt nhân biến dạng sinh thêm các bậc tự do cũng giống như sự dao động tập thể của các hạt nhân. James Rainwater, Aage Bohr (con trai của Niels Bohr) và Ben Mottelson đã phát triển các mô hình mô tả các kích thích hạt nhân và họ cùng nhận giải Nobel vật lý năm 1975.
Các mô hình về hạt nhân được nhắc đến trên đây không chỉ dựa trên các nguyên lý chung, có tính định hướng mà còn dựa trên các thông tin ngày càng tăng về phổ hạt nhân. Harold C. Urey đã phát hiện ra deuterium, một đồng vị nặng của hydro, và vì thế, ông được trao giải Nobel về hóa học vào năm 1934. Fermi, Lawrence, Cockcroft, và Walton đã được nhắc đến ở phần trước đã phát triển các phương pháp để tạo ra các đồng vị hạt nhân không bền. Edwin M. McMillan và Glenn T. Seaborg nhận giải Nobel hóa học năm 1951 vì đã mở rộng bảng đồng vị hạt nhân tới các nguyên tố nặng nhất. Năm 1954, Walther Bothe và Max Born (người được nhắc đến ở trên) nhận giải Nobel vật lý vì phát triển phương pháp trùng hợp cho phép những người nghiên cứu quang phổ có thể lựa chọn các chuỗi bức xạ hạt nhân có liên quan từ phân rã hạt nhân. Phương pháp này lại hóa ra rất quan trọng, đặc biệt là trong nghiên cứu các trạng thái kích thích của hạt nhân và tính chất điện từ của chúng.
Nguyên tử
Khi xem xét các hệ nhiều hạt, việc nghiên cứu các lớp điện tử của các nguyên tử dễ hơn của hạt nhân (hạt nhân thực ra không chỉ bao gồm các proton và neutron mà còn nhiều thành phần hơn nguyên tử, như là các hạt “ảo” có thời gian sống ngắn). Đó là do lực điện từ yếu và đơn giản hơn lực hạt nhân “mạnh” giữ các thành phần của hạt nhân lại với nhau. Cơ học lượng tử của Schrodinger, Heisenberg, và Pauli và phần mở rộng tương đối tính của Dirac đã có thể mô tả khá tốt các tính chất cơ bản của các điện tử trong nguyên tử. Tuy vậy, một bài toán có từ lâu vẫn chưa được giải quyết, tức là các vấn đề toán học liên quan đến các tương tác lẫn nhau giữa các điện tử sau khi tính đến lực hút của các hạt nhân mang điện tích dương. Một khía cạnh của vấn đề này đã được đế cập bởi một trong những người đạt giải Nobel hóa học mới đây (1998), đó là Walter Kohn. Ông đã phát triển phương pháp “hàm mật độ” (density functional method) có thể áp dụng vào các nguyên tử tự do cũng như áp dụng cho các điện tử trong các phân tử và trong chất rắn.
Vào đầu thế kỉ 20, bảng tuần hoàn các nguyên tố hóa học vẫn chưa hoàn thiện. Lịch sử ban đầu của giải Nobel bao gồm các phát hiện một số các nguyên tố còn thiếu. Lord Raleigh (John William Strutt) đã chú ý đến sự khác nhau về khối lượng nguyên tử tương đối khi các mẫu ô-xi và ni-tơ được tách trực tiếp từ không khí quanh ta với mẫu được tách từ các thành phần hóa học. Ông kết luận rằng khí quyển phải có chứa thành phần chưa biết, đó là nguyên tố argon có khối lượng nguyên tử là 20. Ông nhận giải Nobel vật lý năm 1904, cùng năm với ngài William Ramsay nhận giải Nobel hóa học vì đã tách được nguyên tố Hê-li.
Trong nửa cuối của thế kỉ 20, đã có một sự phát triển vượt bậc về phổ và độ chính xác nguyên tử, mà nhờ đó người ta có thể đo được các dịch chuyển giữa các trạng thái nguyên tử hoặc phân tử mà rơi vào vùng vi sóng hoặc cùng ánh sáng khả kiến. Vào những năm 50, Alfred Kastler (người nhận giải Nobel năm 1966) và các đồng nghiệp cho thấy các điện tử trong các nguyên tử có thể được đặt vào các trạng thái kích thích lọc lựa bằng cách sử dụng ánh sáng phân cực. Sau phân rã phóng xạ, ánh sáng phân cực cũng có thể làm cho spin của các nguyên tử ở trạng thái cơ bản định hướng. Cảm ứng dịch chuyển tần số radio đã mở ra các khả năng đo các tính chất của các trạng thái bị lượng tử hóa của các điện tử trong nguyên tử một cách chính xác hơn trước rất nhiều. Một hướng phát triển song song đã dẫn đến việc phát hiện ra maser và laser dựa trên “khuyếch đại phát xạ kích thích sóng vô tuyến” (amplification of stimulated emission of radiation) trong các trường điện từ ở vùng vi sóng và khả kiến (ánh sáng) – các hiệu ứng mà về mặt nguyên lý đã được tiên đoán từ các phương trình của Einstein vào năm 1917 nhưng đã không được quan tâm đặc biệt cho đến tận đầu những năm 50.
Charles H. Townes đã phát triển maser đầu tiên vào năm 1958. Nikolay G. Basov và Aleksandr M. Prokhorov đã thực hiện công trình lý thuyết về nguyên lý maser. Maser đầu tiên sử dụng một dịch chuyển kích thích trong phân tử ammonia. Nó đã phát ra bức xạ vi sóng mạnh không giống như các bức xạ tự nhiên (với các quang tử có các pha khác nhau). Độ sắc nét của tần số của maser ngay lập tức trở thành một công cụ quang trọng trong kĩ thuật, xác định thời gian và các mục đích khác. Townes nhận nửa giải Nobel vật lý năm 1964, Basov và Prokhorov chia nhau một nửa giải còn lại.
Đối với bức xạ khả kiến, sau này laser được phát triển trong một số phòng thí nghiệm. Nicolaas Bloembergen và Arthur L. Schawlow được nhận nửa giải Nobel năm 1981 cho công trình nghiên cứu về phổ laser chính xác của các nguyên tử và phân tử. Một nửa giải của năm đó được trao cho Kai M. Siegbahn (con trai của Manne Siegbahn), người đã phát triển một phương pháp có độ chính xác cao để xác định phổ nguyên tử và phân tử dựa vào các điện tử phát ra từ các lớp điện tử bên trong khi bị tác động của chùm tia X có năng lượng xác định. Phổ điện tử của ông được sử dụng làm công cụ phân tích trong rất nhiều ngành của vật lý và hóa học.
Sự tác động có điều khiển giữa các điện tử của nguyên tử và các trường điện từ tiếp tục cung cấp những thông tin chi tiết hơn về cấu trúc của các trạng thái của điện tử trong nguyên tử. Norman F. Ramsey đã phát triển các phương pháp chính xác dựa trên sự hưởng ứng của các điện tử tự do trong chùm nguyên tử với trường điện từ tần số radio, Wolfgang Paul đã phát minh ra các “bẫy” nguyên tử tạo thành từ các điện trường và từ trường tác động lên toàn bộ thể tích mẫu. Nhóm nghiên cứu của Hans G. Dehmelt là những người đầu tiên cách li được các hạt riêng lẻ (trong trường hợp này là các phản điện tử) cũng như là các nguyên tử riêng lẻ trong các bẫy như vậy. Lần đầu tiên, các nhà thực nghiệm có “thể giao tiếp” được với các nguyên tử riêng biệt bằng các tín hiệu vi sóng và laser. Điều này cho phép nghiên cứu các khía cạnh mới của tính chất cơ học lượng tử và làm tăng độ chính xác hơn nữa trong việc xác định tính chất nguyên tử và chuẩn hóa thời gian. Paul và Dehmelt nhận một nửa giải Nobel năm 1989 và một nửa giải còn lại được trao cho Ramsey.
Bước cuối cùng trong tiến bộ này là làm cho các nguyên tử trong các bẫy như vậy chuyển động chậm đến mức, ở trạng thái cân bằng nhiệt trong môi trường khí, chúng có thể tương ứng với nhiệt độ chỉ vài micro Kenvin. Điều đó được thực hiện bằng cách cho chúng vào để làm nguội bằng laser thông qua một tập hợp các hệ thống được thiết kế rất thông minh do Steven Chu, Claude Cohen-Tannoudji và William D. Phillips thực hiện khi nhóm này nghiên cứu thao tác lên các nguyên tử thông qua quá trình va chạm với các quang tử laser. Công trình của họ được nhìn nhận bằng giải Nobel năm 1997, hứa hẹn những ứng dụng quan trọng trong kĩ thuật đo lường bổ sung thêm tính chính xác trong việc xác định định lượng nguyên tử.

Hình3:(từ trái) Kohn(1923-), Kastler(1902-1984), Townes(1915-?), và Raman(1888-1970)
Hết phần 6

29 Tháng Bảy, 2006, 02:51:19 PM
Reply #7
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Phân tử và plasmaCác phân tử tạo thành từ các nguyên tử. Chúng tạo ra mức phức tạp tiếp theo khi nghiên cứu các hệ nhiều hạt. Nhưng các nghiên cứu phân tử thường được coi như một nhánh của hóa học (ví dụ như giải Nobel hóa học năm 1936 được trao cho Petrus J. W. Debye), và hiếm khi được trao giải Nobel về vật lý. Chỉ có một ngoại lệ đó là công trình của Johannes Diderik van der Waals, ông đã đưa ra các phương trình trạng thái của các phân tử cho chất khí khi tính đến tương tác lẫn nhau giữa các phân tử và sự giảm thể tích tự do gây ra bởi kích thước hữu hạn của chúng. Các phương trình van der Waals là những điểm rất quan trọng trong việc mô tả quá trình ngưng tụ của các chất khí thành chất lỏng. Ông nhận giải Nobel vật lý năm 1910. Jean B. Perrin nghiên cứu chuyển động của các hạt nhỏ lơ lửng trong nước và nhận giải Nobel năm 1926. Nghiên cứu của ông cho phép khẳng định lý thuyết thống kê của Einstein về chuyển động Brown cũng như các định luật điều khiển quá trình cân bằng của các hạt lơ lửng trong chất lỏng khi chịu tác dụng của trọng lực.
Năm 1930, ngài Sir C. Venkata Raman nhận giải Nobel vật lý cho các quan sát của ông chứng tỏ rằng ánh sáng tán xạ từ các phân tử bao gồm các thành phần có tần số bị dịch chuyển tương ứng với ánh sáng đơn sắc. Sự dịch chuyển này gây bởi sự tăng hoặc giảm năng lượng đặc trưng của phân tử khi chúng thay đổi chuyển động quay hoặc dao động. Phổ Raman nhanh chóng trơ thành nguồn thông tin quan trọng cung về cấu trúc và động học phân tử.
Plasma là trạng thái khí của vật chất trong đó các nguyên tử hoặc phân tử bị ion hóa rất mạnh. Lực điện từ giữa các ion dương và giữa các ion và điện tử đóng một vai trò nổi trội điều này làm tăng tính phức tạp khi nghiên cứu plasma so với nguyên tử hoặc phân tử trung tính. Năm 1940, Hannes Alfvén đã chứng minh rằng một loại chuyển động tập thể mới, gọi là “sóng từ-thủy động lực học” (magneto-hydrodynamical wave) có thể được sinh ra trong các hệ plasma. Các sóng này đóng một vai tròn quan trọng việc xác định tính chất của plasma, trong phòng thí nghiệm cũng như trong khí quyển trái đất và trong vũ trụ. Alfvén nhận nửa giải Nobel năm 1970.
Vật lý chất rắn
Các tinh thể được đặc trưng bởi sự xắp xếp đều đặn của các nguyên tử. Sau khi phát hiện ra tia X không lâu, Max von Laue nhận thấy rằng, các tia X bị tán xạ khi đi qua các tinh thể chất rắn giống như ánh sáng đi qua một cách tử quang học (optical grating). Có hiện tượng này là do bước sóng của tia X thông thường trùng với khoảng cách giữa các nguyên tử trong chất rắn. Ngài William Henry Bragg (cha) and William Lawrence Bragg (con) lần đầu tiên dùng tia X để đo khoảng cách giữa các nguyên tử và phân tích sự sắp xếp hình học của các nguyên tử trong các tinh thể đơn giản. Vì các công trình tiên phong trong việc nghiên cứu tinh thể học bằng tia X (mà sau này được phát triển đến trình độ rất cao), họ được trao giải Nobel vật lý, Laue năm 1914 và cha con Bragg năm 1915.
Cấu trúc của tinh thể là trạng thái ổn định nhất trong nhiều trạng thái rắn mà nguyên tử có thể được xắp xếp tại nhiệt độ và áp suất thông thường. Vào những năm 30, Percy W. Bridgman đã phát minh ra các dụng cụ mà nhờ đó có thể nghiên cứu sự thay đổi cấu trúc tinh thể, tính chất điện, từ, nhiệt của chất rắn dưới áp suất cao. Rất nhiều tinh thể thể hiện các chuyển pha dưới các điều kiện đặc biệt như vậy. Sự sắp xếp hình học của các nguyên tử bị thay đổi đột ngột tại áp suất nhất định. Bridgman nhận giải Nobel vật lý năm 1946 cho các phát minh trong lĩnh vực vật lý áp suất cao.
Vào những năm 40, nhờ sự phát triển của các máy phản ứng phân rã hạt nhân, các nhà thực nghiệm có thể thu được các neutron năng lượng thấp. Người ta cũng thấy rằng, giống như tia X, các neutron cũng rất hiệu quả trong việc xác định cấu trúc tinh thể bởi vì bước sóng de Broglie của hạt nhân cũng cỡ khoảng cách giữa các nguyên tử trong chất rắn. Clifford G. Shull đã có nhiều đóng góp cho sự phát triển kĩ thuật nhiễu xạ neutron trong việc xác định cấu trúc tinh thể, và cũng cho biết rằng, sự sắp xếp của các mô men từ nguyên tử trong các vật liệu có trật tự từ có thể làm tăng nhiễu xạ neutron, cung cấp một công cụ rất mạnh để xác định cấu trúc từ.
Shull nhận giải Nobel vật lý năm 1994 cùng với Bertram N. Brockhouse, chuyên gia về một khía cạnh khác của tán xạ neutron trên chất rắn: khi các neutron kích thích kiểu dao động phonon trong tinh thể gây ra suy giảm năng lượng. Do đó, Brockhouse đã phát triển máy phổ neutron 3 chiều, nhờ đó có thể thu được toàn vẹn các đường cong tán sắc (năng lượng của phonon là một hàm của véc-tơ sóng). Các đường cong tương tự có thể thu được đổi với dao động của mạng từ (kiểu magnon).
John H. Van Vleck có đóng góp đặc biệt cho lý thuyết từ học trong chất rắn vào những năm sau khi ra đời cơ học lượng tử. Ông đã tính toán các ảnh hưởng của liên kết hóa học lên các nguyên tử thuận từ và giải thích sự phụ thuộc vào nhiệt độ và từ trường ngoài của tính chất từ. Đặc biệt ông đã phát triển lý thuyết trường tinh thể của các hợp chất của các kim loại chuyển tiếp, đó là điều vô cùng quan trọng trong việc tìm hiểu các tâm hoạt động trong các hợp chất dùng cho vật lý laser cũng như sinh học phân tử. Ông cùng nhận giải Nobel vật lý với Philip W. Anderson và ngài Nevill F. Mott (xem dưới đây).
Các nguyên tử từ tính có thể có các mô men từ sắp xếp theo cùng một phương trong một thể tích nhất định (vật liệu như vậy được gọi là vật liệu sắt từ), hoặc các mô men có cùng độ lớn nhưng lại sắp xếp đan xen “thuận” rồi đến “nghịch” (vật liệu phản sắt từ), hoặc sắp xếp đan xen nhưng độ lớn lại khác nhau (vật liệu ferri từ,…). Louis E. F. Néel đã đưa ra các mô hình cơ bản mô tả các vật liệu phản sắt từ và ferri từ, đó là các thành phần quan trọng trong nhiều dụng cụ chất rắn. Các vật liệu đó được nghiên cứu rất nhiều bằng kĩ thuật nhiễu xạ neutron đã nói trên đây. Néel nhận một nửa giải Nobel vật lý năm 1970.
Trật tự của các nguyên tử trong tinh thể chất rắn cũng như rất nhiều loại trật tự từ khác nhau là những ví dụ của các hiện tượng trật tự nói chung trong tự nhiên khi các hệ sắp xếp sao cho có lợi về mặt năng lượng bằng cách chọn những trạng thái đối xứng nhất định. Các hiện tượng tới hạn, là các hiện tượng mà tính đối xứng sắp bị thay đổi (ví dụ khi nhiệt độ thay đổi chẳng hạn), có tính phổ quát cao cho các loại chuyển pha khác nhau, mà trong đó bao gồm cả chuyển pha từ. Kenneth G. Wilson, người nhận giải Nobel vật lý năm 1982, đã phát triển một lý thuyết gọi là lý thuyết tái chuẩn hóa (renormalization theory) cho các hiện tượng tới hạn liên hệ với các chuyển pha, một lý thuyết còn được ứng dụng trong lý thuyết trường của vật lý hạt cơn bản.
Các tinh thể lỏng tạo ra một lớp vật liệu đặc biệt có rất nhiều đặc tính lý thú, trên cả quan điểm tương tác cơ bản trong chất rắn cũng như các ứng dụng kĩ thuật. Pierre-Gilles de Gennes đã phát triển lý thuyết cho tinh thể lỏng và sự chuyển giữa các pha có độ trật tự khác nhau. Ông cũng sử dụng cơ học thống kê để mô tả sự sắp xếp và động lực học của các chuỗi polymer, và bằng cách đó cho thấy rằng, các phương pháp được phát triển cho các hiện tượng trật tự trong các hệ đơn giản có thể được khái quát hóa cho các hệ phức tạp có mặt trong “chất rắn mềm”. Vì đóng góp đó, ông nhận giải Nobel vật lý năm 1991.
Một dạng chất lỏng đặc biệt đã được quan tâm nghiên cứu đó là chất lỏng hê-li. Tại áp suất thông thường, hê-li là chất hóa lỏng ở nhiệt độ thấp nhất. Hê-li cũng có hiệu ứng đồng vị mạnh nhất, từ hê-li (4) hóa rắn ở nhiệt độ 4.2 độ Kenvin, cho đến hê-li (3) hóa rắn ở nhiệt độ 3.2 độ Kenvin. Heike Kamerlingh-Onnes là người đầu tiên hóa lỏng hê-li vào năm 1909. Ông nhận giải Nobel vật lý năm 1913 cho các kết quả của hê-li lỏng và cho các nghiên cứu của ông về tính chất của vật chất tại nhiệt độ thấp. Lev D. Landau đã đưa ra các khái niệm cơ bản (ví dụ như chất lỏng Landau) liên quan đến các hệ nhiều hạt trong chất rắn và áp dụng các khái niệm đó vào lý thuyết hê-li lỏng để giải thích các hiện tượng đặc biệt của hê-li (4) như là hiện tượng siêu chảy (xem dưới đây), kích thích “roton”, và các hiện tượng âm học. Ông được trao giải Nobel năm 1962.
Hết phần 7

29 Tháng Bảy, 2006, 02:52:10 PM
Reply #8
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Vào những năm 20 và 30, Pyotr L. Kapitsa đã phát triển một số kĩ thuật thực nghiệm để thực hiện và nghiên cứu các hiện tượng ở nhiệt độ thấp. Ông nghiên cứu nhiều khía cạnh của hê-li (4) lỏng và cho thấy rằng hê-li lỏng có tính siêu chảy (tức là chảy không có ma sát) khi nhiệt độ thấp hơn 2.2 độ Kenvin. Sau này hiện tượng siêu chảy được hiểu là sự thể hiện của mối liên hệ lượng tử giữa hiện tượng ngưng tụ Bose-Einstein (được tiên đoán bằng lý thuyết vào năm 1920) và nhiều tính chất giống như trạng thái siêu dẫn của điện tử trong một số chất dẫn điện đặc biệt. Kapitsa được trao một nửa giải Nobel vật lý năm 1978.Hê-li (3) thì lại thể hiện các hiện tượng đặc biệt, vì mỗi hạt nhân hê-li có spin khác không chứ không giống như hê-li (4). Do đó, nó giống như là các hạt fermion và không bị ngưng tụ Bose-Einstein như các hạt boson. Tuy vậy, giống như các vật liệu siêu dẫn (xem dưới đây), các cặp hạt có spin bán nguyên có thể tạo thành các hạt “giả boson” và có thể bị ngưng tụ gây nên trạng thái siêu chảy. Hiện tượng siêu chảy của hê-li (3) xảy ra tại nhiệt độ thấp hơn của hê-li (4) hàng ngàn lần và đã được David M. Lee, Douglas D. Osheroff và Robert C. Richardson phát hiện ra, họ nhận giải Nobel vật lý năm 1996. Họ đã quan sát thấy các pha siêu chảy khác nhau cho thấy cấu trúc xoáy phức tạp và các hiện tượng lượng tử rất thú vị.
Các điện tử trong chất rắn có thể bị định xứ ở xung quanh các nguyên tử của chúng trong các chất cách điện, hoặc chúng có thể chuyển động qua lại giữa các vị trí của các nguyên tử trong các chất dẫn điện hoặc chất bán dẫn. Vào đầu thế kỉ 20, người ta biết rằng các kim loại có thể phát ra các điện tử khi bị nung nóng, nhưng người ta không biết điện tử phát ra là do bị kích thích nhiệt hay là do các tương tác hóa học với môi trường khí xung quanh. Bằng các thực nghiệm tiến hành trong môi trường có chân không cao, cuối cùng, Owen W. Richardson đã xác định rằng sự phát xạ của điện tử là do hiệu ứng nhiệt và ông cũng thiết lập định luật phân bố của của các điện tử theo vận tốc. Và do đó, Richardson nhận giải Nobel năm 1928.
Cấu trúc điện tử xác định các tính chất điện, từ và quang của chất rắn và nó còn có vai trò quan trọng đến tính chất cơ và nhiệt nữa. Một trong những nhiệm vụ quan trọng của các nhà vật lý thế kỉ 20 là đo trạng thái và động học của các điện tử và mô hình hóa các tính chất của chúng để hiểu các tổ chức của các điện tử trong các loại chất rắn khác nhau. Điều rất tự nhiên là các hiện tượng khác thường đã thu hút mạnh mẽ các nhà vật lý chất rắn. Điều đó được phản ánh trong giải Nobel vật lý: vài giải đã được trao các các phát hiện liên quan đến siêu dẫn và các hiện tượng đặc biệt thể hiện trong một số chất bán dẫn.
Siêu dẫn lần đầu tiên được phát hiện từ rất sớm, từ năm 1911. Kamerlingh-Onnes đã thấy rằng điện trở của thủy ngân giảm xuống nhỏ hơn một phần tỉ giá trị bình thường khi bị làm lạnh thấp hơn một nhiệt độ chuyển pha Tc khoảng 4 độ Kenvin. Như được nhắc ở phần trên, ông đã nhận giải Nobel năm 1913. Tuy vậy, một thời gian dài người ta không hiểu tại sao các điện tử có thể chuyển động mà không bị cản trở trong các chất siêu dẫn tại nhiệt độ thấp. Nhưng vào đầu những năm 60, Leon N. Cooper, John Bardeen và J. Robert Schrieffer đã đưa ra lý thuyết dựa trên ý tưởng là các cặp điện tử (có spin và hướng chuyển động ngược nhau) có thể giảm một lượng năng lượng Eg bằng cách chia xẻ một cách chính xác cùng một độ biến dạng của mạng tinh thể khi chúng chuyển động. Các cặp Cooper này hành động giống như các hạt boson. Sự tạo cặp này cho phép chúng chuyển động như một chất lỏng liên kết, không bị ảnh hưởng khi các kích thích nhiệt (có năng lượng là kT) nhỏ hơn năng lượng tạo thành khi kết cặp (Eg). Lý thuyết BCS này được trao giải Nobel vật lý năm 1972.
Đột phá trong việc hiểu cơ sở cơ học lượng tử này dẫn đến các tiến bộ trong các mạch siêu dẫn: Brian D. Josephson đã phân tích sự dịch chuyển của các hạt tải điện giữa hai kim loại siêu dẫn được ngăn cách bởi một lớp vật liệu dẫn điện thường rất mỏng. Ông tìm thấy rằng pha lượng tử xác định tính chất dịch chuyển là một hàm dao động của điện thế bên ngoài đặt lên chuyển tiếp này. Hiệu ứng Josephson có các ứng dụng quan trọng trong các phép đo chính xác vì nó thiết lập mối liên hệ giữa điện thế và tần số. Josephson nhận một nửa giải Nobel vật lý năm 1973. Ivar Giaever, người đã phát minh và nghiên cứu các tính chất chi tiết của “chuyển tiếp đường ngầm” (tunnel junction) (một hệ thống điện tử dựa trên chất siêu dẫn) chia nhau một nửa giải còn lại với Leo Esaki cho công trình nghiên cứu về hiệu ứng đường ngầm trong chất bán dẫn (xem dưới đây).
Mặc dầu có khá nhiều các hợp kim và hợp chất siêu dẫn được phát hiện trong khoảng 75 năm sau phát hiện của Kamerlingh-Onnes, hiện tượng siêu dẫn mãi được xem như là hiện tượng chỉ xảy ra tại nhiệt độ thấp, với nhiệt độ chuyển pha siêu dẫn thấp hơn 20 độ Kenvin. Cho nên khi J. Georg Bednorz và K. Alexander Müller cho thấy rằng Ô-xít Lanthan-đồng có pha thêm Ba-rri có nhiệt độ chuyển pha là 35 độ Kenvin thì mọi người rất ngạc nhiên. Và ngay sau đó, các phòng thí nghiệm khác công bố các hợp chất có cấu trúc tương tự như thế có tính siêu dẫn ở nhiệt độ khoảng 100 độ Kenvin. Phát hiện về “siêu dẫn nhiệt độ cao” này khởi động một làn sóng trong vật lý hiện đại: tìm hiểu cơ chế cơ bản cho tính siêu dẫn của các vật liệu đặc biệt này. Bednorz và Müller nhận giải Nobel năm 1987.
Chuyển động của các điện tử trong kim loại ở trạng thái dẫn điện bình thường đã được mô hình hóa về lý thuyết đến một độ phức tạp chưa từng có từ khi có mặt của cơ học lượng tử. Một trong những bước tiến lớn ban đầu là việc đưa vào khái niệm sóng Bloch, hàm sóng được lấy tên của nhà vật lý Felix Bloch (người nhận nửa giải Nobel vật lý năm 1952 cho công trình nghiên cứu về cộng hưởng từ). Một khái niệm quan trọng nữa là “chất lỏng điện tử” (electron fluid) trong các chất dẫn điện do Lev Landau (xem phần hê-li lỏng). Philip W. Anderson đã có những đóng góp quan trọng vào lý thuyết cấu trúc điện tử của các kim loại, đặc biệt là các bất đồng nhất trong các hợp kim và các nguyên tử từ tạp chất trong các kim loại. Nevill F. Mott đã nghiên cứu các điều kiện chung cho tính dẫn điện của điện tử trong chất rắn và đưa ra các công thức xác định các điểm mà một chất bán dẫn biến thành một chất dẫn điện (chuyển pha Mott) khi thành phần hoặc các thông số bên ngoài bị thay đổi. Anderson và Mott chia nhau một nửa giải Nobel năm 1977 và một nửa giải được trao cho John H. Van Vleck cho các nghiên cứu lý thuyết về cấu trúc điện tử của các hệ từ và mất trật tự.
Một giải Nobel vật lý trước đây (1920) đã được trao cho Charles E. Guillaume cho phát hiện cho thấy rằng giãn nở nhiệt của một số thép ni-ken (hợp kim được gọi là invar) bằng không. Giải Nobel này được trao chủ yếu bởi tầm quan trọng của các hợp kim invar trong các phép đo chính xác được dùng trong vật lý, ngành đo đạc và đặc biệt là thước mét chuẩn được đặt ở Paris. Các hợp kim này được dùng rất rộng rãi trong các dụng cụ có độ chính xác cao như là đồng hồ, … Các cơ sở lý thuyết về sự phụ thuộc vào nhiệt độ của độ giãn nở chỉ mới được giải thích gần đây. Và mới đây (1998), Walter Kohn nhận giải Nobel hóa học cho các phương pháp của ông khi xử lý các tương quan trao đổi lượng tử , mà nhờ đó người ta có thể vượt qua các giới hạn trong tính toán cấu trúc điện tử trong chất rắn và các phân tử.
Trong các chất bán dẫn, độ linh động của các điện tử bị giảm đi rất mạnh do có sự tồn tại của vùng cấm năng lượng đối với các điện tử gọi là các khe năng lượng. Sau khi người ta hiểu được vai trò cơ bản của các tạp chất cho điện tử và nhận điện tử trong si-líc siêu sạch (và sau này còn có các vật liệu khác), các chất bán dẫn được sử dụng làm các bộ phận trong điện kĩ thuật. William B. Shockley, John Bardeen (xem thêm lý thuyết BCS) và Walter H. Brattain đã tiến hành các nghiên cứu cơ bản về siêu dẫn và đã phát triển transistor loại một. Đó là bình minh của kỉ nguyên “linh kiện điện tử”. Họ cùng nhận giải Nobel năm 1956.
Sau này Leo Esaki đã phát triển đi-ốt đường ngầm, một linh kiện điện tử có điện trở vi phân âm, đó là một tính chất kĩ thuật rất thú vị. Nó tạo thành từ hai chất bán dẫn pha tạp loại “n” và loại “p”, có một đầu dư điện tử và một đầu khác thiếu điện tử. Hiệu ứng đường ngầm xuất hiện khi điện thế dịch lớn hơn khe năng lượng trong các chất bán dẫn. Ông chia giải Nobel vật lý năm 1973 với Brian D. Josephson.
Hết phần 8

29 Tháng Bảy, 2006, 02:53:08 PM
Reply #9
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Với kĩ thuật hiện đại, người ta có thể tạo các màng mỏng cấu trúc xác định từ các vật liệu bán dẫn và chúng thể tiếp xúc trực tiếp với nhau. Với cấu trúc không đồng nhất như vậy, con người không bị giới hạn vào các khe năng lượng trong các chất bán dẫn như si-lic hoặc germani nữa. Herbert Kroemer đã phân tích lý thuyết về độ linh động của các điện tử và lỗ trống trong các chuyển tiếp không đồng nhất. Lý thuyết của ông dẫn đến việc tạo ra các transistor với các đặc trưng được cải tiến rất nhiều mà sau này gọi là HEMT (high electron mobility transistors – transistor có độ linh động điện tử cao), các HEMT rất quan trọng đối với các linh kiện điện tử tốc độ cao ngày nay. Kroemer cũng giả thiết rằng các cấu trúc không đồng nhất kép có thể tạo điều kiện cho hoạt động của laser, cùng khoảng thời gian với Zhores I. Alferov đưa ra ý tưởng như thế. Sau này Alferov đã tạo ra laser bán dẫn xung đầu tiên vào năm 1970. Sự kiện này là điểm khởi đầu của kỉ nguyên các dụng cụ quang điện hiện nay đang dùng trong các đi-ốt laser, đầu đọc đĩa CD, đầu đọc mã vạch và cáp quang viễn thông. Và gần đây, Alferov và Kroemer chia nhau một nửa giải Nobel vật lý năm 2000, một nửa giải còn lại về tay Jack S. Kilby, đồng phát minh mạch điện tử tích hợp (xem phần sau Vật lý và Kĩ thuật).Khi áp một thế điện cực lên các hệ cấu trúc không đồng nhất, người ta có thể tạo ra “các màng ngược” (inversion layers), trong đó các hạt tải điện chỉ chuyển động trong không gian hai chiều. Các màng như vậy lại hóa ra có các tính chất rất thú vị và kì lạ. Năm 1982, Klaus von Klitzing phát hiện ra hiệu ứng Hall lượng tử. Khi một từ trường mạnh đặt vuông góc với mặt phẳng của màng giả hai chiều, thì các điều kiện lượng tử lại không tăng một cách tuyến tính với sự tăng của từ trường mà lại tăng một cách nhảy bậc ở biên của mẫu. Điện trở Hall giữa các bậc này có giái trị h/ie2 trong đó i là các số nguyên tương ứng với các quĩ đạo điện tử bị lượng tử hóa. Hiệu ứng này cho phép có thể đo tỉ số giữa các hằng số cơ bản rất chính xác, nó có hệ quả quan trọng trong kĩ thuật đo lường, von Klitzing nhận giải Nobel vật lý năm 1985.
Một ngạc nhiên nữa đến ngay sau khi Daniel C. Tsui và Horst L. Störmer thực hiện các nghiên cứu kĩ hơn về hiệu ứng Hall lượng tử sử dụng các màng ngược trong các vật liệu siêu sạch. Trạng thái ổn định xuất hiện trong hiệu ứng Hall không chỉ đối với từ trường tương ứng với sự lấp đầy của các quĩ đạo bởi một, hai, ba v.v. giá trị điện tích của điện tử mà còn đối với các điện tích không nguyên!. Điều này chỉ có thể hiểu được dựa vào một khái niệm về chất lỏng lượng tử (quantum fluid) mà ở đó chuyển động của các điện tử độc lập có điện tích e được thay thế bởi các kích thích trong một hệ nhiều hạt mà hệ này cư xử (trong một từ trường mạnh) như thể các điện tích có giá trị e/3, e/5,… tham gia vào. Robert B. Laughlin phát triển lý thuyết mô tả trạng thái mới của vật chất này và chia giải Nobel vật lý năm 1998 với Tsui and Störmer.
Đôi khi các phát hiện trong một lĩnh vực của vật lý hóa ra lại có các ứng dụng quan trọng trong các lĩnh vực vật lý khác. Một ví dụ liên quan đến vật lý chất rắn đó là quan sát của Rudolf L. Mössbauer vào cuối những năm 50. Hạt nhân của nguyên từ hấp thụ có thể bị kích thích cộng hưởng bởi các tia gamma phát ra từ các nguyên tử phát xạ được chọn một cách hợp lý khi các nguyên tử trong cả hai trường hợp được bắn ra sao cho sự giật lùi của chúng loại trừ nhau. Năng lượng bị lượng tử hóa của hạt nhân trong điện từ trượng nội của chất rắn đó có thể được xác định vì năng lượng đó tương ứng với các vị trí khác nhau của sự cộng hưởng mà sự cộng hưởng này rất sắc nét. Phát hiện này trở nên quan trọng trong việc xác định cấu trúc điện từ của nhiều vật liệu và Mössbauer nhận một nửa giải Nobel vật lý năm 1961 cùng với R. Hofstadter.

Hình4:(từ trái) Landau(1908-1960), Klitzing(1943-), Glaser(1926-), và Einstein(1879-1955)

Vật lý và kĩ thuật
Rất nhiều các phát minh thực nghiệm và lý thuyết được nhắc cho đến nay có một ảnh hưởng lớn đến sự phát triển của các dụng cụ kĩ thuật bằng việc mở ra những lĩnh vực vật lý hoàn toàn mới hoặc đưa ra các ý tưởng để có thể tạo ra các dụng cụ kĩ thuật. Các ví dụ rất dễ thấy là công trình của Shockley, Bardeen, và Brattain mà dẫn đến transitor và khởi đầu cuộc cách mạng điện tử; các nghiên cứu cơ bản của Townes, Basov, và Prokhorov dẫn đến việc phát triển maser và laser. Cũng nên nhắc lại rằng các máy gia tốc hạt hiện nay là các công cụ rất quan trọng trong một vài lĩnh vực khoa học vật liệu và y học. Các công trình khác được vinh danh bằng giải Nobel ngày càng có thiên hướng về mặt kĩ thuật hoặc chúng có tầm quan trọng đặc biệt trong việc xây dựng các linh kiện để phát triển ngành liên lạc và thông tin.
Một giải Nobel cách đây khá lâu (1912) đã được trao cho Nils Gustaf Dalén cho phát minh về “van mặt trời” (sun-valve) tự động được dùng rộng rãi trong các cột mốc và phao trong ngành hàng hải. Phát minh đó dựa trên sự khác nhau về bức xạ nhiệt từ các vật có độ phản xạ ánh sáng khác nhau: một trong số ba thanh song song trong dụng cụ của ông có màu đen, điều này làm tăng sự sai khác trong việc hấp thụ nhiệt và dãn nở nhiệt của các thanh trong thời gian mặt trời chiếu vào. Hiệu ứng này được dùng để ngắt nguồn cấp khí tự động vào ban ngày và làm giảm nhiều nhu cầu bảo dưỡng trên biển.
Các dụng cụ và kĩ thuật quang là những chủ đề cho vài giải Nobel. Khoảng đầu thế kỉ 20, Gabriel Lippmann đã phát triển một phương pháp chụp ảnh màu sử dụng hiệu ứng giao thoa ánh sáng. Một chiếc gương được đặt tiếp xúc với một thể nhũ tương nhạy quang phủ trên một tấm kim loại sao cho khi chúng bị chiếu sáng, ánh sáng phản xạ trong chiếc gương sẽ làm tăng sóng đứng trong thể nhũ tương đó. Việc tráng ảnh làm cho các hạt bạc (trong thể nhũ tương đó) bị phân tầng khi gương chiếu sáng lên tấm kim loại và ảnh tạo thành có màu sắc tự nhiên như thật. Giải Nobel năm 1908 được trao cho Lippmann. Không may, phương pháp của Lippmann mất nhiều thời gian phơi sáng. Sau này phương pháp đó bị thay thế bằng các kĩ thuật nhiếp ảnh khác nhưng nó lại có nhiều ứng dụng trong kĩ thuật tạo ảnh ba chiều chất lượng cao.
Trong hiển vi quang học, Frits Zernike cho thấy rằng thậm chí các vật hấp thụ bức xạ rất yếu (trong suốt khi nhìn bằng mắt thường) có thể nhìn thấy được nếu chúng tạo thành từ những vùng có hệ số khúc xạ ánh sáng khác nhau. Trong kính “hiển vi nhạy pha” (phase-contrast microscope) của Zernike, người ta có thể phân biệt các vệt sáng có pha bị thay đổi khi đi qua các vùng không đồng nhất. Kính hiển vi loại này có tầm quan trọng đặc biệt trong việc quan sát các mẫu sinh học. Zernike nhận giải Nobel vật lý năm 1953. Vào những năm 40, Dennis Gabor đề ra nguyên lý ảnh ba chiều. Ông tiên đoán rằng nếu tia sáng tới có thể giao thoa với tia phản xạ từ một mảng hai chiều thì có thể tạo được một ảnh ba chiều của vật thể. Tuy vậy, việc thực hiện ý tưởng này phải đợi đến khi laser được phát hiện. Laser có thể cung cấp ánh sáng cố kết cần thiết cho quan sát hiện tượng giao thoa nói ở trên. Gabor nhận giải Nobel năm 1971.
Hiển vi điện tử có ảnh hưởng sâu rộng trên nhiều lĩnh vực khoa học tự nhiên. Ngay sau khi C. J. Davisson and G. P. Thomson phát hiện ta bản chất sóng của điện tử, người ta nhận thấy rằng bước sóng ngắn của điện tử năng lượng cao có thể làm tăng độ phân giải so với hiển vi quang học. Ernst Ruska tiến hành các nghiên cứu cơ bản về quang điện tử và thiết kế kính hiển vi điện tử đầu tiên họat động vào những năm đầu của thập niên 30. Nhưng cũng phải mất hơn 50 sau ông mới nhận giải Nobel vật lý.
Ruska nhận một nửa giải Nobel vật lý vào năm 1986, nửa giải còn lại được chia đều cho Gerd Binnig và Heinrich Rohrer, hai người đã phát triển một phương pháp khác hẳn để thu được các bức ảnh với độ phân giải cực cao. Phương pháp của họ được ứng dụng trong nghiên cứu bề mặt chất rắn và dựa trên hiệu ứng đường ngầm của các điện tử. Các điện tử của các nguyên tử ở một đầu kim loại rất nhọn có thể chui sang các nguyên tử từ trên bề mặt chất rắn khi đầu nhọn kim loại đó được di chuyển đến rất gần bề mặt (khoảng 1 nm). Bằng cách giữ cho dòng điện tử chui ngầm đó cố định và di chuyển đầu nhọn theo bề mặt chất rắn, người ta có thể có được bức ảnh ba chiều của bề mặt chất rắn cần nghiên cứu. Bằng phương pháp này, ta có thể nhìn thấy từng nguyên tử trên bề mặt.
Hết phần 9

29 Tháng Bảy, 2006, 02:53:56 PM
Reply #10
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
Viễn thông là một trong những thành tựu kĩ thuật vĩ đại của thế kỉ 20. Vào những năm 90 thế kỉ 19, Guglielmo Marconi đã làm thí nghiệm với sóng điện từ của Hetz mới được phát hiện vào lúc đó. Ông là người đầu tiên liên lạc một trong những trạm phát sóng trên mặt đất với một “ăng-ten” đặt trên cao có vai trò tương tự như một trạm thu sóng. Trong khi các thí nghiệm đầu tiên của Hetz được tiến hành trong phạm vi phòng thí nghiệm thì Marconi đã mở rộng khoảng cách truyền tín hiệu đến vài km. Carl Ferdinand Braun (cha đẻ của ống Braunian, dao động kế chùm ca-tốt đầu tiên – cathode ray oscilloscope) đã thực hiện một cải tiến, ông đưa mạch cộng hưởng vào các máy phát dao động của Hetz. Độ hòa âm và khả năng tạo các dao động mạnh không bị chặn làm tăng dải truyền sóng, và vào năm 1901, Marconi đã thành công trong việc thu phát sóng vô tuyết vượt Đại Tây Dương. Marconi và Braun cùng nhận giải Nobel vật lý năm 1909. Vào thời điểm này, người ta vẫn không hiểu làm thế nào mà sóng vô tuyến có thể truyền với những khoảng cách xa (thực tế, chúng có thể truyền đến bên kia trái đất), nhớ rằng mọi người đều biết sóng vô tuyến có bản chất giống ánh sáng, chúng truyền theo đường thẳng trong không gian. Cuối cùng thì ngài Edward V. Appleton đã chứng minh bằng thực nghiệm cho thấy một giả thiết trước đó của Heaviside và Kennelly về sóng vô tuyến bị phản xạ giữa các lớp không khí có độ dẫn khác nhau trong khí quyển là đúng. Appleton đã đo giao thoa của sóng trực tiếp và sóng phản xạ với các bước sóng khác nhau và có thể xác định độ cao của các lớp Heaviside, hơn nữa ông còn tìm ra một lớp nữa cao hơn lớp Heaviside gọi là các lớp Appleton. Appleton nhận giải Nobel vật lý năm 1947.Các tiến bộ trong vật lý hạt nhân và vật lý hạt phụ thuộc rất nhiều vào kĩ thuật cao (và đôi khi lại thúc đẩy kĩ thuật phát triển). Điều này được minh họa bằng các công trình của Cockcroft và Walton cho việc phát triển máy gia tốc tĩnh điện tuyến tính (linear electrostatic accelerator) và các công trình của Lawrence cho phát triển cyclotron tĩnh điện tuyến tính. Việc ghi nhận các hạt năng lượng cao cũng là một thử thách kĩ thuật, thành công trong vấn đề đó đã được ghi nhận bằng vài giải Nobel.
Giải Nobel vật lý năm 1958 được chia cho Pavel A. Cherenkov, Il'ja M. Frank và Igor Y. Tamm cho các phát hiện và giải thích của họ về hiệu ứng Cherenkov. Đó là sự phát xạ ánh sáng trong một nón có góc mở đặc biệt xung quanh hướng của hạt mang điện, khi vận tốc của nó vượt vận tốc ánh sáng trong môi trường mà nó chuyển động. Vì góc nón này có thể được sử dụng để xác định vận tốc của hạt, công trình của các nhà vật lý này nhanh chóng trở thành cơ sở cho sự phát triển các đầu thu rất hiệu quả.
Việc nhìn thấy đường đi của các hạt trong các phản ứng là cần thiết để giải thích các sự kiện xảy ra khi năng lượng cao. Các thí nghiệm ban đầu với năng lượng tương đối thấp sử dụng các vết để lại trên giấy ảnh. Charles T. R. Wilson đã phát triển một buồng, trong đó người ta có thể nhìn thấy các hạt vì chúng để lại các vết do ion hóa khí. Trong buồng Wilson, khí có thể dãn nở rất nhanh, điều này làm giảm nhiệt độ và dẫn đến hóa đặc hơi xung quanh các điểm bị ion hóa, các hạt này có thể nhìn thấy khi chiếu sáng mạnh. Wilson nhận nửa giải Nobel vật lý năm 1927 với Arthur H. Compton.
Các bước tiến tiếp theo trên cùng hướng nghiên cứu nói trên đã được thực hiện khi Donald A. Glaser phát minh ra “buồng bọt” (bubble chamber). Vào những năm 50, các máy gia tốc đã đạt năng lượng từ 20 – 30 tỉ eV và các phương pháp thu hạt trước đó không còn phù hợp nữa; độ dài của các vết khí đã quá dài đối với buồng Wilson. Các hạt nhân nguyên tử trong buồng bọt (thường chứa hidro lỏng) được dùng như cái bia, và vết do hạt tạo thành có thể được theo dõi. Tại nhiệt độ hoạt động, chất lỏng bị quá nóng và bất kì một hiện tượng gián đoạn nào, như vùng ion hóa, ngay lập tức hình thành các bọt nhỏ. Luis W. Alvarez đã tiến hành các cải tiến quan trọng đặc biệt là các cải tiến liên quan đến kĩ thuật ghi và phân tích dữ liệu. Công trình của ông đã đóng góp vào việc mở rộng số các hạt cơ bản, đặc biệt là các “cộng hưởng”, cái sau này được hiểu là các trạng thái kích thích của các hệ gồm các quark và gluon. Glaser nhận giải Nobel vật lý năm 1960 và Alvarez năm 1968.
Cho đến tận cuối những năm 80, các buồng bọt vẫn là các con ngựa sắt cho các phòng thí nghiệm vật lý năng lượng cao nhưng sau đó chúng bị thay thế bởi các hệ đầu thu điện tử. Bước phát triển mới nhất về đầu thu các hạt này được nhìn nhận bằng một giải Nobel (1992) là công trình của Georges Charpak. Ông đã nghiên cứu chi tiết quá trình ion hóa trong chất khí và đã sáng tạo ra “buồng dây” (wire chamber), một đầu thu chứa khí trong đó các dây được bố trí dày đặc để thu các tín hiệu điện gần các điểm ion hóa, nhờ đó có thể quan sát được đường đi của hạt. Buồng dây và các biến thể của nó, buồng chiếu thời gian và một số tổ hợp tạo thành từ buồng dây/phát xung ánh sáng/Cherenkov tạo thành các hệ thống phức tạp cho phép tiến hành các nghiên cứu chọn lọc cho các hiện tượng cực hiếm (như việc hình thành các quark nặng), tín hiệu của các hiện tượng này thường bị lẫn trong các nền nhiễu mạnh của các tín hiệu khác.
Giải Nobel đầu tiên của thiên niên kỉ mới (2000) được trao cho Jack S. Kilby vì các thành tựu đặt nền tảng cho công nghệ thông tin hiện nay. Vào năm 1958, ông đã chế tạo mạch tích hợp đầu tiên mà trong đó các chi tiết điện tử được xây dựng trong một thực thể duy nhất tạo thành từ vật liệu bán dẫn, sau này gọi là các “chip”. Điều này mở ra con đường thu nhỏ kích thước và sản xuất hàng loạt các mạch điện tử. Kết hợp với việc phát triển các linh kiện dựa trên các cấu trúc không đồng nhất mô tả trước đây (nhờ đó mà Alferov và Kroemer được nhận một nửa giải Nobel), mạch tích hợp dẫn đến cuộc “cách mạng công nghệ thông tin” đã thay đổi rất nhiều xã hội của chúng ta ngày nay.
Các ghi nhận
Khi đọc bài tóm tắt này, bạn đọc nên nhớ rằng số giải Nobel bị giới hạn (theo qui định hiện nay, nhiều nhất là 3 người có thể cùng nhận giải hàng năm). Cho đến năm 2000, 163 người đã nhận giải thưởng cho các thành tựu trong vật lý. Thông thường, trong quá trình chọn lọc, ủy ban trao giải phải loại bớt một số các đóng góp quan trọng “gần Nobel” khác. Vì các lý do dễ nhận thấy, bản tóm tắt này không thể nhắc đến các đóng góp này. Tuy vậy, một điều rất thật là một bản kê khai tương đối chặt chẽ sự phát triển của vật lý có thể được nêu lên và có thể được coi như là một sự chứng nhận cho thấy rằng các giải Nobel vật lý đã đề cập đến phần lớn các phát hiện quan trọng trong chuyến thám hiểm hấp dẫn tới một sự hiểu biết về thế giới chúng ta đang sống dựa trên các ý tưởng và thực nghiệm do những người được giải Nobel thực hiện.
Đây là một chương trong cuốn sách “Các giải Nobel: 100 năm đầu tiên”, tác giả Erik B. Karlsson, chủ biên Agneta Wallin Levinovitz và Nils Ringertz, nhà xuất bản ĐH Imperial và World Scienctific ấn hành năm 2001.
Bổ sung:
Giải Nobel vật lý năm 2001 được trao cho Eric A. Cornell, Wolfgang Ketterle, và Carl E. Wieman vì những thành tựu trong việc nghiên cứu hiện tượng ngưng tụ Bose-Eistein mà đã được mô tả ở phần trên. Nhờ công trình này mà các tiên đoán lý thuyết của Bose và Eistein về một trạng thái mới của vật chất được chứng minh bằng thực nghiệm. Năm 1924, nhà vật lý Bose đã thực hiện một tính toán quan trọng về các hạt ánh sáng. Ông gửi các kết quả này cho Eistein và Einstein đã mở rộng lý thuyết này cho một số loại nguyên tử nhất định. Eistein tiên đoán rằng, nếu khí tạo thành từ các nguyên tử như vậy bị làm lạnh đến một nhiệt độ rất thấp thì các nguyên tử đột ngột tập hợp lại trong trạng thái có năng lượng cực tiểu giống như các chất khí bình thường ngưng tụ thành các chất lỏng. Do đó, hiện tượng này gọi là hiện tượng ngưng tụ Bose-Einstein. Và 70 năm sau, Cornell và Wieman đã quan sát hiện tượng này khi làm lạnh 2000 nguyên tử ru-bi đến nhiệt độ chỉ bằng 2 phần tỉ độ trên nhiệt độ không tuyệt đối. Độc lập với hai nhà vật lý trên, Ketterle đã thực hiện các thí nghiệm với nguyên tử Na và ông đã tiến hành với một số nguyên tử lớn hơn và thu được nhiều kết quả hơn. Ông chứng minh rằng hai trạng thái ngưng tụ có thể lan truyền vào nhau và do đó giao thoa với nhau giống như giao thoa của sóng nước khi chúng ta ném hai hòn đá giống nhau xuống nước cùng một lúc. Ketterle tạo ra một luồng các hạt ngưng tụ có tính chất giống laser nhưng khác ở chỗ laser loại này được tạo thành từ hạt vật chất chứ không phải tại thành từ hạt ánh sáng.
Giải Nobel vật lý năm 2002 được trao cho Riccardo Giacconi (một nửa giải), Masatoshi Koshiba (1/4) và Raymond Davis Jr. (1/4). Giải Nobel năm 2002 được trao cho những người có công tóm được các hạt neutrino để cho chúng ta hiểu rõ hơn những vật thể cực lớn như các vì sao, các thiên hà,… Giacconi được nhận giải Nobel, vì ông đã có những cống hiến lớn cho ngành vật lý thiên văn. Từ những năm 1960, Giacconi đã thiết kế chiếc kính thiên văn chụp tia X đầu tiên. Sau này, kính thiên văn vệ tinh Chandra đã kế thừa nền tảng nghiên cứu của ông. Koshiba đã phát minh ra chiếc máy dò neutrino khổng lồ đặt dưới lòng đất. Hệ thống đó đã cung cấp những kiến thức mới về hạt neutrino, hạt nó có thể đi qua cơ thể chúng ta mà không để lại dấu vết gì. Tiến sĩ Raymond Davis - người được xem là bậc tiền bối số một của vật lý hạt. Davis đã chứng minh được sự tồn tại của các hạt neutrino từ những năm 1960, nhờ việc tạo ra các thiết bị dò hạt nằm sâu 1,5 kilomét dưới lòng đất.
Giải Nobel vật lý năm 2003 được trao cho Abrikosov, Ginzburg, và Leggett, vì có những cống hiến to lớn để cải thiện hiểu biết của con người về hiện tượng siêu dẫn và siêu lỏng. Tính chất siêu dẫn cho phép vật liệu dẫn điện ở nhiệt độ cực thấp mà không bị cản trở. Lý thuyết về loại vật liệu này đã đặt nền tảng cho sự ra đời của kỹ thuật chụp ảnh cộng hưởng từ (MRI), một phương pháp chẩn đoán không đau giúp các bác sĩ nhìn sâu vào cơ thể người bệnh, được sử dụng cho hàng triệu bệnh nhân mỗi năm. Vật liệu siêu lỏng cũng tồn tại ở nhiệt độ cực thấp, ngay trên độ không tuyệt đối. Khi đó, nó mất tất cả đặc tính nhớt. Những hiểu biết về loại vật liệu này có thể giúp chúng ta nhìn sâu vào phản ứng của vật chất ở trạng thái ổn định nhất.
David J. Gross, H. David Politzer và Frank Wilczeck là chủ nhân của giải Nobel Vật lý năm 2004 với những khám phá về lực hạt nhân mạnh - loại lực giúp liên kết các hạt nằm trong nhân nguyên tử. Họ đã có những phát hiện quan trọng về mặt lý thuyết "liên quan tới lực hạt nhân mạnh", loại lực chủ yếu ở cấp độ nhân nguyên tử. Các proton và nơtron không phải là thành phần nhỏ nhất cấu tạo nên nguyên tử. Thay vì thế, chính chúng lại được cấu thành từ ba hạt nhỏ hơn, đó là các hạt quark. Lực hạt nhân mạnh chính là lực giúp các quark “dính” với nhau ở bên trong các proton và nơtron, cũng như giữ chặt chính các hạt này với nhau bên trong hạt nhân nguyên tử. Nghiên cứu của ba nhà khoa học chỉ ra rằng không giống như các lực khác, chẳng hạn lực điện từ hay lực hấp dẫn (mạnh lên khi hai hạt tiến lại gần nhau), lực hạt nhân mạnh lại suy yếu đi khi hai quark tiến về một chỗ. Hiện tượng đó giống như thể các hạt được nối với nhau bằng một dải cao su, mà lực kéo giữa chúng càng mạnh khi chúng càng ở xa nhau. Phát hiện của ba nhà nghiên cứu, công bố năm 1973, "đã dẫn đến lý thuyết sắc động học lượng tử - lý thuyết góp phần quan trọng cho sự ra đời của Mô hình Chuẩn". Mô hình chuẩn là lý thuyết về các hạt cơ bản và cách thức chúng tương tác với nhau. Nó mô tả tất cả các hiện tượng vật lý có liên quan đến lực điện từ (tương tác giữa các hạt tích điện), lực hạt nhân yếu (chi phối quá trình phân rã phóng xạ) và lực hạt nhân mạnh (tương tác giữa các quark).
HẾT

29 Tháng Bảy, 2006, 02:54:40 PM
Reply #11
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
1. André-Marie AmpèreBách khoa toàn thư mở Wikipedia

Andre-Marie Ampère (20 tháng 1, 1775 - 10 tháng 6, 1836), là nhà vật lý người Pháp và là một trong những nhà phát minh ra điện từ trường. Đơn vị đo cường độ dòng điện được mang tên ông là ampere.
Ông sinh ra ở Lyon, gần với Poleymieux - quê của cha ông. Ông có tính tò mò và lòng say mê theo đuổi kiến thức từ khi còn rất nhỏ, người ta nói rằng ông đã đưa ra lời giải cho các tổng số học lớn bằng cách sử dụng các viên sỏi và mẩu bánh bích quy trước khi biết con số. Cha ông dạy ông tiếng Latinh, nhưng sau đó đã bỏ khi nhận thấy khả năng và khuynh hướng nghiên cứu toán học của con trai. Tuy vậy chàng thanh niên trẻ tuổi Ampère sau này đã học lại tiếng Latinh để giúp ông hiểu được các tác phẩm của Euler và Bernoulli. Cuối đời ông đã nói rằng ông biết nhiều nhất về toán học khi ông 18 tuổi, tuy vậy ông cũng đọc rất nhiều sách vở của các lĩnh vực khác như lịch sử, các ghi chép trong các chuyến du hành, thơ ca, triết học và khoa học tự nhiên.
Khi Lyon bị rơi vào tay quân đội cách mạng năm 1793, cha của Ampère, người giữ chức vụ juge de paix, đã chống lại một cách kiên quyết cuộc cách mạng này, do đó đã bị bỏ tù và sau đó đã chết trên đoạn đầu đài. Sự kiện này gây ấn tượng sâu sắc đối với tâm hồn nhạy cảm của Andre-Marie, trong vài năm sau đó ông đã chìm trong sự lãnh cảm. Sau đó sở thích của ông đã được đánh thức bởi một số bức thư về thực vật học khi chúng đến tay ông, và từ thực vật học ông đã chuyển sang nghiên cứu thơ ca cổ điển, và tự mình viết những bài thơ.
Năm 1796 ông gặp Julie Carron, và họ đã gắn bó với nhau, quá trình gặp gỡ của hai người đã được ông ghi chép lại rất chất phác trong tạp chí (Amorum). Năm 1799 họ cưới nhau. Vào khoảng năm 1796 Ampère giảng dạy toán học, hóa học và ngoại ngữ tại Lyon; năm 1801 ông chuyển tới Bourg, làm giáo sư môn vật lý và hóa học, để lại người vợ ốm đau và con nhỏ (là Jean Jacques Ampère) ở Lyon. Vợ ông mất năm 1804, ông đã không bao giờ lấy lại được thăng bằng vì mất mát này. Cùng năm này ông được bổ nhiệm làm giáo sư môn toán của trường trung học (lycée) ở Lyon.
Bài báo nhỏ của ông Considérations sur la théorie mathématique du jeu, trong đó mô tả những khả năng thắng bạc thay vì chơi may rủi, được xuất bản năm 1802 và đã giành được sự chú ý của Jean Baptiste Joseph Delambre, là người đã giới thiệu ông làm giáo sư ở Lyon, và sau đó một thời gian (năm 1804) là vị trí trợ giảng ở trường Bách khoa Paris, ở đó ông được bầu là giáo sư toán năm 1809. Tại đây ông tiếp tục theo đuổi các nghiên cứu khoa học và các nghiên cứu đa ngành với một sự chuyên cần không suy giảm. Ông được kết nạp làm thành viên của Viện Hàn lâm Pháp năm 1814.
Ông đã thiết lập mối quan hệ giữa điện trường và từ trường, và trong phát triển khoa học về điện từ trường, hay như ông gọi đó là điện động lực học, là lĩnh vực tên tuổi của Ampère đã được công nhận. Vào ngày 11 tháng 9 năm 1820 ông được biết về phát minh của Hans Christian Ørsted rằng kim nam châm chịu tác động của dòng điện. Vào ngày 18 tháng 9 cùng năm ông gửi một báo cáo tới Viện hàn lâm, báo cáo này chứa đựng những bình luận hoàn thiện hơn về hiện tượng này.
Toàn bộ lĩnh vực này đã được mở ra khi ông khảo sát và phát biểu công thức toán học không những để giải thích hiện tượng điện từ trường mà còn dự đoán nhiều sự kiện và hiện tượng mới.
Các bài báo gốc của ông về đề tài này có thể tìm thấy trong Ann. Chim. Phys. trong khoảng từ năm 1820 đến năm 1828. Sau đó ông đã viết bài Essai sur la philosophie des sciences rất có giá trị. Ngoài ra, ông đã viết một loạt các luận văn và bài báo, trong đó có hai bài về tích phân của các phương trình vi phân (Jour. École Polytechn. x., xi.).
Ông mất ở Marseille và được hỏa táng ở Cimetière de Montmartre, Paris. Sự hào hiệp và tính cách đơn giản của ông được thể hiện trong cuốn sách của ông Journal et correspondance (Paris, 1872). Bốn mươi lăm năm sau, các nhà toán học đã công nhận ông.

Đóng góp
Cống hiến của Ampère trong khoa học rất lớn.

Là một nhà toán học hàng đầu, ông đã chỉ ra cách sử dụng ngành khoa học này như thế nào. Ông coi toán học là một ngành của triết học, là cơ sở để đưa các phát minh trong vật lý trở thành các công thức định lượng. Vai trò của toán học là nâng cao tính chính xác, cũng như một phương tiện thực nghiệm của vật lý hiện đại.
Là một nhà tiên đoán vĩ đại, ông đã đưa các tư tưởng khoa học, từ đó đã mở ra các hướng nghiên cứu và ứng dụng khoa học rộng lớn. Tên tuổi của ông được xếp ngang hàng với các nhà bác học vĩ đại khác của nước Pháp.
Ampere có nhiều đóng góp trong lĩnh vực toán học, vật lý, hóa học, triết học. Trong toán học ông nghiên cứu lý thuyết xác suất, giải tích và ứng dụng toán học vào vật lý.
Công trình của Ampère trong vật lý đạt được hàng loạt các thành tựu vĩ đại. Dựa vào phát hiện của Ørsted năm 1820 về tác dụng của dòng địện lên kim nam châm, ông đã nghiên cứu bằng thực nghiệm, tìm ra lực điện từ và phát biểu thành định luật mang tên ông (Xem định luật Ampere). Lực điện từ là một trong các lực cơ bản của tự nhiên, cơ sở của điện động lực học. Định luật Ampère cho phép xác định chiều và trị số của lực điện từ, là cơ sở chế tạo động cơ điện. Công thức Ampère và định luật Faraday là hai cơ sở chính để James Clerk Maxwell xây dựng nên lý thuyết trường điện từ.
Ampère đã phát biểu qui tắc xác định từ trường của dòng điện (qui tắc vặn nút chai), tiên đoán dòng điện phân tử để giải thích bản chất từ của vật liệu sắt từ. Sau Ampère, vật liệu sắt từ trở nên rất phổ biến.
Trong hoá học, ông đã tìm ra định luật sau này gọi là định luật Avogadro-Ampère. Ông còn là một nhà thực nghiệm tài ba. Ông đã thiết kế và tự làm nhiều thiết bị phục vụ cho các thí nghiệm của mình. Những thiết bị này đã trở thành nền tảng cho các dụng cụ đo điện (như ampe kế, vôn kế, điện trở kế...) Ông còn là cha đẻ của phần tử vô hướng, của từ xuyến và của nam châm điện.

29 Tháng Bảy, 2006, 02:55:45 PM
Reply #12
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
2. Albert EinsteinBách khoa toàn thư mở Wikipedia

Huy chương vàng giải Noben

Albert Einstein (14 tháng 3 năm 1879 - 18 tháng 4 năm 1955) là nhà vật lý người Mỹ gốc Đức - Do Thái, người đã công bố vào năm 1905 ba bài viết gây nên ảnh hưởng có tính cách mạng đến sự phát triển của vật lý hiện đại. Trong một bài viết, ông đã đề xuất thuyết tương đối hẹp mô tả chính xác hơn các hạt vật chất chuyển động với vận tốc cao. Tiên đề cơ bản của thuyết tương đối hẹp là vận tốc ánh sáng cũng như mọi định luật vật lý là như nhau trong mọi hệ quy chiếu quán tính. Einstein biết rõ về kết quả thí nghiệm âm tính của Michelson-Morley, nhưng chưa quen biết với công trình của Hendrik Lorentz sau năm 1895, nên ông đã tự sáng tạo ra biến đổi Lorentz cho mình (Pais 1982, p. 133).
Thuyết tương đối hẹp đòi hỏi nhiều sự thay đổi đối với các định luật cơ học, tuy nhiên các phương trình điện từ của James Clerk Maxwell được phát hiện là thoả mãn hoàn toàn thuyết này mà không cần sự thay đổi gì. Sử dụng thuyết tương đối hẹp, Einstein đã tìm ra được sự tương đương giữa khối lượng nghỉ m0 và năng lượng E của vật chất, mô tả bởi , với c là vận tốc ánh sáng và p là động lượng (tương đối tính). Khi khối lượng tổng cộng (tương đối tính) m = γm0 được dùng (ở đây ), phương trình đơn giản hoá thành phương trình nổi tiếng E = mc2.
Trong một bài báo khác cùng xuất bản vào năm 1905, Einstein đã giải thích được hiệu ứng quang điện bằng cách giả thiết rằng ánh sáng là các hạt chuyển động (gọi là photon) với năng lượng E = hν, ở đây h là hằng số Planck (gọi tên theo nhà vật lý Max Planck) và ν là tần số của hạt photon. Đây là một mở rộng của lý thuyết lượng tử ánh sáng của Planck. Phương trình mà Einstein tiên đoán từ lý thuyết này đã được kiểm chứng bằng thí nghiệm của Robert Millikan vào năm 1916.
Cũng vào năm 1905 ấy, Einstein đã giải thích chuyển động Brown bằng lý thuyết động học, với lập luận cơ bản là chuyển động của các hạt Brown là do sự va đập hỗn loạn của các phân tử. Einstein đã tiếp tục phát triển lý thuyết này đến một phương trình cho thấy các hạt lơ lửng trong không trung trên mặt đất sẽ dần dần tự sắp xếp theo mật độ giảm dần theo hàm mũ tự nhiên từ thấp lên cao. Sử dụng phương trình của Einstein cho chuyển động Brown và phân bố của các hạt, Jean Perrin đã đo được hằng số Boltzmann bằng thí nghiệm.
Einstein sau đó tiếp tục phát triển thuyết tương đối rộng, dựa trên tiên đề là gia tốc đều tương đương với trọng trường hấp dẫn. Tiên đề này thường được biết đến với tên gọi nguyên lý tương đương của trọng trường. Nó mô tả trọng trường như là độ cong của không thời gian. Lý thuyết tương đối rộng sử dụng rất nhiều tính toán tensor Ricci-Curbastro. Einstein cũng đã nghiên cứu mô hình vũ trụ, và thấy là lý thuyết tương đối rộng không thỏa mãn điều kiện đồng nhất, đẳng hướng và cân bằng của vũ trụ, trừ phi thêm vào lý thuyết này một hằng số gọi là hằng số vũ trụ.
Trong phần lớn cuộc đời còn lại của mình, Einstein đã có những cố gắng không thành công trong việc tạo ra một lý thuyết thống nhất có thể mô tả tất cả mọi loại lực của tự nhiên như là các dạng khác nhau của một lực cơ bản nhất. Các lý thuyết của Einstein thường gây nhiều tranh cãi, ngay cả rất nhiều năm sau khi ông công bố chúng. Trong một bản tiến cử Einstein vào Viện Hàn lâm Khoa học Đức, người ta đã viết "Tóm lại, ta có thể nói là hầu như không có một vấn đề lớn nào của vật lý hiện đại mà Einstein không thực hiện những đóng góp quan trọng. Một vài dự đoán nhầm của ông, ví dụ như giả thuyết về các hạt ánh sáng, cũng không thể đem ra để phản bác lại ông được, vì rằng sẽ không thể đưa ra những ý tưởng mới, ngay cả với những môn khoa học chính xác nhất, mà không thỉnh thoảng sẵn sàng đương đầu với may rủi" (Pais 1982, p. 382).
Một nghiên cứu gần đây về bộ não của Einstein, đã được bảo quản cho đến nay (chi tiết có thể xem Regis 1991), người ta thấy khu vực bên trong của não, phần liên quan đến tư duy toán học, rộng hơn bình thường đến 15% (Witelson và các tác giả khác 1999). Ngoài ra, các đường viền não, bình thường chạy từ sau ra trước, không phát triển đối với não của Einstein. Tuy nhiên, chưa thể khẳng định được sự ảnh hưởng của các yếu tố sinh lý bất thường này đến sự sáng tạo khoa học của Einstein.

Hình chụp ngày 14 tháng 3, 1951 bởi một nhiếp ảnh gia của UPI (United Press International) nhân ngày sinh nhật Einstein.


Albert Einstein, cha đẻ của lý thuyết tương đối, năm 1948

Các câu nói nổi tiếng[/blue]
Do có gốc gác Do Thái, Einstein đã bị công kích bởi một số người bài Do Thái. Khi một truyền đơn được phân phát dưới tiêu đề 100 tác giả chống lại Einstein, Einstein đã viết "Nếu tôi thực sự sai, chỉ cần một người chống lại là đủ". Một số câu nói nổi tiếng về Chúa của Einstein được liệt kê dưới đây:
"Bất cứ ai cho mình quyền phán xét thế nào là Sự thật và Tri thức đều trở thành hề đối với Chúa."
"Tôi muốn biết Chúa đã sinh ra thế giới như nào. Tôi không quan tâm đến hiện tượng cụ thể này nọ, trong bối cảnh nọ kia. Tôi muốn biết Chúa đã nghĩ như thế nào, tất cả phần còn lại chỉ là chi tiết."
"Chúa rất khó hiểu, nhưng không ma mãnh."
"Chúa không chơi trò may rủi với thế giới này."
"Khoa học mà thiếu tôn giáo thì khập khiễng. Tôn giáo mà không có khoa học thì mù quáng" (Science without religion is lame. Religion without science is blind).
Einstein cũng đã có nhiều câu nói sâu sắc về khám phá khoa học.
"Sự sáng tạo không phải là sản phẩm của suy luận lô-gic, dù rằng sản phẩm cuối cùng gắn liền với một cấu trúc lô-gic."
"Tự nhiên chỉ cho chúng ta thấy cái đuôi của con sư tử. Nhưng tôi không nghi ngờ rằng con sư tử là chủ nhân của cái đuôi ấy dù nó không thể xuất đầu lộ diện với tầm vóc khổng lồ của nó." (Pais 1982, p. 235)
"Từ trên cao, Tự nhiên mỉm cười nhìn xuống, người đã trao cho chúng ta một lòng khao khát khám phá, nhiều hơn là khả năng trí tuệ để làm việc ấy."
"Đừng lo lắng về khó khăn của bạn trong toán học, tôi đảm bảo với bạn rằng những khó khăn toán học của tôi còn gấp bội."
Khi con ông hỏi vì sao ông nổi tiếng, Einstein đã giải thích công lao của ông một cách dễ hiểu và khiêm tốn:
"Khi con bọ dừa bò theo một cành cây nó không nhận thấy là cành cây bị cong. Cha đã có may mắn nhận thấy cái mà con bọ dừa không nhận thấy con ạ."

Einstein bông đùa như thế nào? [/blue]
   
 
Trong những năm tháng cuối đời, Albert Einstein đã cố gắng làm khuây khỏa con vẹt rầu rĩ của mình bằng cách nói với nó những câu hài hước tục tĩu và giả vờ ốm để tránh mặt khách đến thăm. Một cuốn nhật ký mới được tìm thấy của một người phụ nữ tiết lộ điều đó.[/SIZE]
Người phụ nữ này là bạn gái cuối cùng của Einstein. Ngoài những lời tự bạch về sự khổ nhọc trong những công trình vật lý, hầu hết cuốn nhật ký của Johanna Fantova hồi tưởng những quan điểm của Einstein về chính trị thế giới và đời sống riêng tư của ông.
Tài liệu này là "một phác họa chân thực về những nỗ lực đấu tranh dũng cảm của Einstein trước đủ loại phiền hà của bệnh tật và tuổi tác", Freeman Dyson, một nhà toán học tại Viện nghiên cứu khoa học tiên tiến ở Princeton, bang New Jersey (Mỹ), nhận định.
Cuốn nhật ký 62 trang, ra đời ở Đức, được khám phá vào tháng 2 vừa qua trong hồ sơ của Fantova tại Thư viện Firestone, Đại học Princeton, nơi bà từng làm việc với tư cách người phụ trách. "Điều ngạc nhiên là vật lý được đề cập quá ít trong cuốn nhật ký", Donald Skemer, người quản lý bản thảo tại Thư viện Firestone, cho biết.
Fantova viết rằng bà ghi lại thời gian ở bên nhà vật lý lừng danh để "làm sáng tỏ vài điều chưa biết của chúng ta về Einstein, không phải như một người đàn ông vĩ đại trở thành huyền thoại trong thời đại mình, cũng không phải như một nhà bác học danh tiếng mà là một Einstein đời thường".
Fantova trẻ hơn Einstein 22 tuổi. Và mặc dù hai người dành thời gian đáng kể cho nhau bắt đầu từ những năm 1940, nhật ký của bà chỉ ghi lại mối quan hệ của họ từ tháng 10/1953 cho đến khi ông mất vào tháng 4/1955, ở tuổi 76. Bà mất vào năm 1981, khi 80 tuổi.
Cuốn nhật ký thuật lại quan điểm của Einstein về chính trị thời kỳ đó, mô tả ông chỉ trích những lời nói của Adlai Stevenson, cuộc chạy đua vũ trang hạt nhân và cuộc tấn công chống cộng do Thượng nghị sĩ Joshep McCarthy thực hiện với nhà khoa học J. Robert Oppenheimer.
"Sự đàn áp chính trị đối người bạn đồng liêu của ông là một nguyên nhân khiến ông vỡ mộng", Fantova viết. Ngoài chính trị, Fantova còn viết về sự cởi mở của Einstein và nỗ lực của ông để trả lời thư những người lạ mặt, một số trong đó cố gắng biến ông thành người theo đạo Cơ Đốc. Ông nói: "Tất cả những người điên trên thế giới đều viết thư cho tôi".
Cuốn nhận ký cũng ghi lại vào lần sinh nhật thứ 75 của mình, Einstein nhận được một quà tặng là một con vẹt. Sau khi nhận thấy nó trở nên u sầu, nhà bác học đã cố gắng thay đổi tâm trạng của nó bằng những câu đùa tục tĩu. Vào thời gian này, Einstein thường giả bộ ốm nặng để tránh khách tới thăm và muốn chụp ảnh ông, và tự tìm cách giải trí ngay cả khi ốm đau thật.
"Sức khỏe của Einstein bắt đầu sa sút nhưng ông vẫn tiếp tục tự buông thả theo những sở thích của mình như đi thuyền. Hiếm khi tôi thấy ông vui vẻ và rạng rỡ như trên con thuyền bé nhỏ cổ xưa kỳ lạ ấy", Fantova viết. Einstein còn gửi thư cho Fantova, mà một số trong đó được bà ghi lại vào nhật ký. Thư viện Princeton hiện cũng giữ một bộ sưu tầm các bài thơ, thư tay và ảnh mà Einstein gửi cho Fantova.
Einstein và người vợ thứ hai Elsa, đến Princeton năm 1933, khi Viện Nghiên cứu khoa học tiên tiến mới được thành lập. Elsa qua đời 3 năm sau đó. Fantova gặp nhà bác học vào năm 1929 ở Berlin. Bà đến Mỹ một mình năm 1939 và với sự thúc giục của Einstein, đã xin vào làm ở thư viện Đại học Bắc Carolina.
           (theo Vietscientist)

29 Tháng Bảy, 2006, 02:56:54 PM
Reply #13
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
3.Marie Curie
Marie Curie, một trong số ít người nhận hai giải Nobel trong hai lĩnh vực khác nhau, là một trong những nhà nghiên cứu về bức xạ quan trọng nhất.

Marie Curie (Maria Skłodowska-Curie, 7 tháng 11, 1867 - 4 tháng 7, 1934) là một nhà hóa học người Pháp gốc Ba Lan và một người đi đầu trong ngành tia X đã hai lần nhận giải Nobel (Vật lý năm 1903 và Hóa học năm 1911). Bà đã thành lập Viện Curie ở Paris và Warszawa.
Sinh ra ở Warszawa, Ba Lan, những năm đầu tiên của Marie không được vui lắm vì bốn năm sau khi chị bà qua đời, mẹ bà cũng qua đời. Marie rất chăm chỉ học tập, có khi bỏ cả ăn và ngủ để học. Sau khi học xong trung học, Marie bị suy nhược thần kinh một năm. Vì là phụ nữ, Marie không được nhận vào trường đại học nào ở Nga hay Ba Lan cho nên bà đã làm người dạy trẻ trong vài năm. Cuối cùng, với sự tài trợ của một bà chị, Marie đến Paris để học hóa học và vật lý tại trường Sorbonne, nơi mà sau này bà trở thành giảng viên phụ nữ đầu tiên.
Tại trường Sorbonne bà gặp và kết hôn với Pierre Curie, một giảng viên khác. Họ cùng nhau nghiên cứu các vật chất phóng xạ, đặc biệt là quặng urani uraninit, có tính chất kỳ lạ là phóng xạ hơn chất urani được chiết ra. Đến 1898 họ đã có giải thích hợp lý: uraninit có một chất phóng xạ hơn urani; ngày 26 tháng 12 Marie Curie tuyên bố sự hiện hữu của chất này.
Sau nhiều năm nghiên cứu họ đã tinh chế vài tấn uraninit, ngày càng tập trung các phần phóng xạ, và cuối cùng tách ra được chất muối clorua (radium chloride) và hai nguyên tố mới. Nguyên tố thứ nhất họ đặt tên là polonium theo tên quê hương của Marie (Pologne theo tiếng Pháp, Polska theo tiếng Ba Lan), và nguyên tố kia tên radium vì khả năng phóng xạ của nó (radiation).
Năm 1903 bà được nhận giải Nobel vật lý cùng với chồng Pierre Curie và Henri Becquerel cho các nghiên cứu về bức xạ. Bà là người phụ nữ đầu tiên nhận giải này.
Tám năm sau, bà nhận giải Nobel hóa học trong năm 1911 cho việc khám phá ra hai nguyên tố hóa học radium và polonium. Bà cố ý không lấy bằng sáng chế tiến trình tách radium, mà để các nhà nghiên cứu tự do sử dụng nó.
Bà là người đầu tiên đoạt, hay chia cùng người khác, hai giải Nobel. Bà là một trong hai người duy nhất đoạt hai giải Nobel trong hai lĩnh vực khác nhau (người kia là Linus Pauling).
Sau khi chồng bà qua đời, bà có một cuộc tình với nhà vật lý Paul Langevin, một người đã có vợ và bỏ vợ, gây ra một cuộc xì căng đan. Tuy bà là một nhà bác học được coi trọng tại Pháp, dư luận Pháp có phần bài ngoại vì bà là một người nước ngoài, từ một nơi ít người biết đến (lúc ấy Ba Lan là một phần của Nga) và có nhiều người gốc Do Thái (Marie là một người vô thần lớn lên trong một gia đình Công giáo, nhưng việc đó không ảnh hưởng đến dư luận). Hơn nữa, Pháp lúc đó hãy còn rung động về vụ Dreyfus. Điều ngẫu nhiên là sau này cháu trai của Paul Langevin là Michel đã kết hôn với cháu gái của Marie Curie là Hélène Langevin-Joliot.
Trong Đệ nhất thế chiến, bà vận động để có các máy chụp tia X di động để có thể điều trị các thương binh. Những máy này được cung cấp lực từ xạ khí radium, một khí không màu, phóng xạ từ radium, sau này được nhận ra là radon. Marie đã lấy khí này từ radium bà đã tinh chế. Ngay sau khi chiến tranh bắt đầu, bà đã bán giải Nobel làm bằng vàng của mình và của chồng để giúp trong nỗ lực chiến tranh.
Năm 1921, bà đã đến Hoa Kỳ để gây quỹ trong cuộc nghiên cứu radium. Bà được đón tiếp nồng hậu.
Trong những năm cuối cùng, bà thất vọng vì nhiều nhà thuốc và người làm mỹ dung đã không thận trọng khi dùng các vật chất phóng xạ.
Bà qua đời gần Sallanches, Pháp trong năm 1934 vì ung thư bạch cầu, chắc chắn là vì bà đã tiếp xúc với một số lượng bức xạ quá cao trong các nghiên cứu.
Con gái lớn nhất của bà, Irène Joliot-Curie, cũng được trao một giải Nobel hóa học trong năm 1935, một năm sau khi Marie Curie qua đời. Con gái út của bà, Eve Curie, viết một cuốn tiểu sử về Marie sau cái chết của mẹ mình.
Năm 1995, tro xương của bà được đưa vào điện Panthéon, bà trở thành người phụ nữ đầu tiên được an nghỉ tại đây vì cống hiến của mình.
Trong một thời gian siêu lạm phát trong đầu thập niên 1990, tờ giấy bạc 20.000 zloty của Ba Lan có hình bà. Hinh bà cũng đã hiện diện trong tờ 500 franc của Pháp cũng như nhiều tem thư và tiền kim loại.
Nguyên tố số 96, Curium, ký hiệu Cm, được đặt tên để tôn vinh bà và Pierre.

29 Tháng Bảy, 2006, 02:58:54 PM
Reply #14
  • Team Olympeek
  • OLYMPIAN
  • **
  • Posts: 121
  • Điểm bài viết: 2
  • |..learning to fly...|
4. Max Planck
Max Karl Ernst Ludwig Planck (23 tháng 4, 1858 – 4 tháng 10, 1947) là một nhà vật lý nổi danh người Đức. Ông được xem là cha đẻ của cơ học lượng tử.
"Pour le Mérite" dành cho khoa học và nghệ thuật 1915 (Planck là chủ tịch hội trao huân chương này từ 1930 trở đi)
Giải Nobel vật lí năm 1918 (được trao năm 1919)
Huân chương con ó của Đế quốc Đức năm 1928.
Mề đai Max-Planck (1928, cùng với Einstein; giải này được tặng bởi DPG năm 1928)
Tiến sĩ vinh dự của các đại học Frankfurt, München (TH), Rostock, Berlin(TH), Graz, Athen, Cambridge, London và Glasgow.
Hành tinh nhỏ mang số 1069 được gọi để tôn vinh Planck là "Stella Planckia" (1938)
Từ năm 1957 đến 1971, các đồng tiền 2-DM của Đức mang hình của Max Planck.